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CHAPTER 1. THE FIRST PROPERTIES 1

Chapter 1

The First Properties

1.1 Setup and the first examples

1.1.1 Notations

All schemes are assumed to be separated. For a “scheme” which is not separated, we will use the term
“prescheme”.

Let A be a ring. We denote by SpecA the spectrum of A. For an ideal I ⊂ A, we use V (I) to
denote the closed subscheme of SpecA defined by I.

Let S be Spec k, SpecOK or an algebraic variety. An S-variety is an integral scheme X which is of
finite type and flat over S. For an algebraic variety, we mean a k-variety.

We will use k,K to denote fields, and k,K to denote their algebraically closure relatively.
Let X be an integral scheme. We denote by K (X) the function field of X. For a closed point

x ∈ X, we denote by κ(x) the residue field of x.
We denote the category of S-varieties by VarS. We denote by X(T ) the set of T -points of X, that

is, the set of morphisms T → X.
Let X be an algebraic variety over k. A geometrical point is referred a morphism Spec k→ X.
When refer a point (may not be closed) in a scheme, we will use the notation ξ ∈ X. We use Zξ to

denote the Zariski closure of {ξ} in X. When we talk about a closed point on an algebraic variety, we
will use the notation x ∈ X(k).

Separated and proper morphisms

1.1.2 Examples
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Appendix A

Commutative Algebra

A.1 Elementary Results
Yang: To be completed

A.1.1 Rings and modules

In the appendix and all the note, the “ring” is always commutative and with identity. We denote by
SpecA the set of prime ideals of a ring A. We denote by mSpecA the set of maximal ideals of A. Let
I ⊂ A be an ideal of A. We define

V (I) := {p ∈ SpecA : I ⊂ p}.

Let a, b be ideals of A. We define

(a : b) := {a ∈ A : ab ⊂ a}.

This is an ideal of A.
Let rad(A) be the Jacobian radical of A, i.e., the intersection of all maximal ideals of A. Let nil(A)

be the nilradical of A, i.e., the ideal of A consisting of all nilpotent elements.

Proposition A.1.1. Let A be a ring. Then we have

nil(A) =
⋂

p∈SpecA

p.

Proof. Yang: To be completed.

Proposition A.1.2. Let A be a ring, p, pi prime ideals of A and a, ai ideals of A.

(a) Suppose a ⊂
⋃n
i=1 pi. Then there exists i such that a ⊂ pi.

(b) Suppose
⋂n
i=1 ai ⊂ p. Then there exists i such that ai ⊂ p.

Proof. Yang: To be completed.
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Let M be an A-module. We say that M is finite if there exists an exact sequence

An →M → 0.

We say that M is finite presented if there exists an exact sequence

Am → An →M → 0.

If A is a noetherian ring, then every finite A-module is finite presented.

Definition A.1.3. Let A be a ring and M an A-module. The support of M is defined as

SuppM := {p ∈ SpecA : Mp 6= 0}.

The annihilator of M is defined as

AnnM := {a ∈ A : aM = 0}.

This is an ideal of A.

Proposition A.1.4. Let A be a ring and M a finite A-module. Then SuppM = V (AnnM). In
particular, SuppM is a closed subset of SpecA.

Proof. Yang: To be completed.

A.1.2 Localization

Definition A.1.5. Let A be a ring and S ⊂ A a multiplicative subset, i.e., 1 ∈ S and s1, s2 ∈ S
implies s1s2 ∈ S. The localization of A at S is defined as

S−1A := A× S/ ∼,

where (a, s) ∼ (b, t) if there exists u ∈ S such that u(at− bs) = 0. Yang: To be completed.

Proposition A.1.6.

A.1.3 Chain conditions

A.1.4 Nakayama’s Lemma

Theorem A.1.7 (Nakayama’s Lemma). Let A be a ring and M be its Jacobi radical. Suppose M
is a finitely generated A-module. If aM =M for a ⊂M, then M = 0.

Proof. Suppose M is generated by x1, · · · , xn. Since M = aM , formally we have (x1, · · · , xn)T =

Φ(x1, · · · , xn)T for Φ ∈ Mn(a). Then (Φ− id)(x1, · · · , xn)T = 0. Note that det(Φ− id) = 1 + a for
a ∈ a ⊂M. Then Φ− id is invertible and then M = 0.

Remark A.1.8. The finiteness of M is crucial in Nakayama’s Lemma. For example, let Z be the
ring of algebraic integers in Q. Choose a non-zero prime ideal p of Z. Then we have that pZp = p2Zp.
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Indeed, if a ∈ pZp, let b =
√
a ∈ Zp. Then b2 = a ∈ pZp and whence b ∈ pZp since p is prime. It

follows that a = b2 ∈ p2Zp.

Proposition A.1.9 (Geometric form of Nakayama’s Lemma). Let X = SpecA be an affine scheme,
x ∈ X a closed point and F a coherent sheaf on X. If a1, · · · , ak ∈ F(X) generate F|x = F ⊗ κ(x),
then there is an open subset U ⊂ X such that ai|U generate F(U).

Proof. Yang: To be completed.

Corollary A.1.10. Let X be a scheme and F a coherent sheaf on X. Then the function x 7→
dimκ(x)F|x is upper semicontinuous.

Proof. Yang: To be completed.

A.1.5 Nullstellensatz

Theorem A.1.11 (Noether’s Normalization Lemma). Let A be a k-algebra of finite type. Then
there is an injection k[T1, · · · , Td] ↪→ A such that A is finite over k[T1, · · · , Td].

Remark A.1.12. Here A does not need to be integral. For example,

Theorem A.1.13 (Hilbert’s Nullstellensatz). Let A be a

A.2 Associated prime ideals

A.2.1 Associated prime ideals

Definition A.2.1 (Associated prime ideals). Let A be a noetherian ring and M an A-module. The
associated prime ideals of M are the prime ideals p of form Ann(x) for some x ∈ M . The set of
associated prime ideals of M is denoted by Ass(M).

Example A.2.2. Let A = k[x, y]/(xy) and M = A. First we see that (x) = Ann y, (y) = Annx ∈
AssM . Then we check other prime ideals. For (x, y), if xf = yf = 0, then f ∈ (x) ∩ (y) = (0). If
(x− a) = Ann f for some f , note that y ∈ (x− a) for a ∈ k∗, then f ∈ (x). Hence f = 0. Therefore
AssM = {(x), (y)}.

Example A.2.3. Let A = k[x, y]/(x2, xy) and M = A. The underlying space of SpecA is the y-axis
since

√
(x2, xy) = (x). First note that (x) = Ann y, (x, y) = Annx ∈ AssM . For (x, y − a) with

a ∈ k∗, easily see that xf = (y − a)f = 0 implies f = 0 since A = k · x ⊕ k[y] as k-vector space.
Hence AssM = {(x), (x, y)}.

Lemma A.2.4. Let A be a noetherian ring and M an A-module. Then the maximal element of the
set

{Annx : x ∈Mp, x 6= 0}
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belongs to AssM .

Proof. We just need to show that such Ann x is prime. Otherwise, there exist a, b ∈ A such that
ab ∈ Annx but a, b /∈ Annx. It follows that Annx ⊊ Ann ax since b ∈ Ann ax \ Annx. This
contradicts the maximality of Annx.

An element a ∈ A is called a zero divisor for M if M → aM,m 7→ am is not injective.

Corollary A.2.5. Let A be a noetherian ring and M an A-module. Then

{zero divisors for M} =
⋃

p∈AssM

p.

Lemma A.2.6. Let A be a noetherian ring and M an A-module. Then p ∈ AssAM iff pAp ∈
AssAp Mp.

Proof. Suppose pAp ∈ AssAp Mp. Let pAp = Ann y0/c with y0 ∈ M and c ∈ A \ p. For a ∈ Ann y0,
ay0 = 0. Then a/1 ∈ pAp. It follows that a ∈ p. Hence Ann y0 ⊂ p.

Inductively, if Ann yn ⊊ p, then there exists bn ∈ A \ p such that yn+1 := bnyn, Ann yn+1 ⊂ p

and Ann yn ⊊ Ann yn+1. To see this, choose an ∈ p \ Ann yn. Then (an/1)yn = 0 since an/1 ∈ pAp.
By definition, there exist bn ∈ A \ p such that anbnyn = 0. This process must terminate since A is
noetherian. Thus Ann yn = p for some n. Hence p ∈ AssAM .

Conversely, suppose p = Annx ∈ AssM . If (a/s)(x/1) = 0 ∈ Mp, there exist t ∈ A \ p such
that tax = 0. It follows that ta ∈ p and then (a/s) ∈ pAp. Hence pAp ∈ AssAp Mp.

Proposition A.2.7. We have AssM ⊂ SuppM . Moreover, if p ∈ SuppM satisfies V (p) is an
irreducible component of SuppM , then p ∈ AssM .

Proof. For any p = Annx ∈ AssM , we have A/p ∼= A · x ⊂M . Tensoring with Ap gives Ap/pAp ↪→
Mp since Ap is flat. Hence Mp 6= 0 and p ∈ SuppM .

Now suppose p ∈ SuppM and V (p) is an irreducible component of SuppM . First we show that
p ∈ AssAp Mp. Let x ∈Mp such that Annx is maximal in the set

{Annx : x ∈Mp, x 6= 0}.

Then we claim that Ann x = pAp. First, Ann x is prime by Lemma A.2.4. If Ann x 6= p, then
V (Annx) ⊃ V (p). This implies that Ann x /∈ SuppMp since SuppMp = SuppM ∩ SpecAp. This is
a contradiction. Thus pAp ∈ AssAp Mp. By Lemma A.2.6, we have p ∈ AssM .

Remark A.2.8. The existence of irreducible component is guaranteed by Zorn’s Lemma.

Definition A.2.9. A prime ideal p ∈ AssM is called embedded if V (p) is not an irreducible com-
ponent of SuppM .

Example A.2.10. For M = A = k[x, y]/(x2, xy), the origin (x, y) is an embedded point.
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Proposition A.2.11. If we have exact sequence 0 → M1 → M2 → M3, then AssM2 ⊂ AssM1 ∪
AssM3.

Proof. Let p = Annx ∈ AssM2 \ AssM1. Then the image [x] of x in M3 is not equal to 0. We
have that Ann x ⊂ Ann[x]. If a ∈ Ann[x] \ Annx, then ax ∈ M1. Since Ann x ⊊ Ann ax, there
is b ∈ Ann ax \ Annx. However, it implies ba ∈ Annx, and then a ∈ Annx since Ann x is prime,
which is a contradiction.

Corollary A.2.12. If M is finitely generated, then the set AssM is finite.

Proof. For p = Annx ∈ AssM , we know that the submodule M1 generated by x is isomorphic to
A/p. Inductively, we can choose Mn be the preimage of a submodule of M/Mn−1 which is isomorphic
to A/q for some q ∈ AssM/Mn−1. We can take an ascending sequence 0 =M0 ⊂M1 ⊂ · · · ⊂Mn ⊂
· · · such that Mi/Mi−1

∼= A/pi for some prime pi. Since M is finitely generated, this is a finite
sequence. Then the conclusion follows by Proposition A.2.11.

A.2.2 Primary decomposition

Definition A.2.13. An A-module is called co-primary if AssM has a single element. Let M be
an A-module and N ⊂ M a submodule. Then N is called primary if M/N is co-primary. If
AssM/N = {p}, then N is called p-primary.

Remark A.2.14. This definition coincide with primary ideals in the case M = A. Recall an ideal
q ⊂ A is called primary if ∀ab ∈ p, a /∈ q implies bn ∈ q for some n.

Let q be a q-primary ideal. Since SuppA/q = {p}, p ∈ AssA/q. Suppose Ann[a] ∈ AssA/q.
Then p ⊂ Ann[a] since V (p) = SuppA/q. If b ∈ Ann[a], then ab ∈ q and a /∈ q. Hence bn ∈ q, and
then b ∈ p. This shows that AssA/q = {p} and q is p-primary as an A-submodule.

Let q ⊂ A be a p-primary A-submodule. First we have p =
√
q since V (p) is the unique

irreducible component of SuppA/q. Suppose ab ∈ q and a /∈ q. Then b ∈ Ann[a] ⊂ p since p is the
unique maximal element in {Ann[c] : c ∈ A \ q}. This implies that bn ∈ q.

Definition A.2.15. Let A be a noetherian ring, M an A-module and N ⊂ M a submodule. A
minimal primary decomposition of N in M is a finite set of primary submodules {Qi}ni=1 such that

N =
n⋂
i=1

Qi,

no Qi can be omitted and AssM/Qi are pairwise distinct. For AssM/Qi = {p}, Qi is called
belonging to p.

Indeed, if N ⊂ M admits a minimal primary decomposition N =
⋂
Qi with Qi belonging to p,

then Ass(M/N) = {pi}. For given i, consider Ni :=
⋂
j ̸=iQj, then Ni/N ∼= (Ni + Qi)/Qi. Since

Ni 6= N , AssNi/N 6= ∅. On the other hand, AssNi/N ⊂ AssM/Qi = {p}. It follows that AssNi/N =

{pi}, whence pi ∈ AssM/N . Conversely, we have an injection M/N ↪→
⊕

M/Qi, so AssM/N ⊂⋃
AssM/Qi. Due to this, if Qi belongs to p, we also say that Qi is the p-component of N .
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Proposition A.2.16. Suppose N ⊂ M has a minimal primary decomposition. If p ∈ AssM/N

is not embedded, then the p component of N is unique. Explicitly, we have Q = ν−1(Np), where
ν :M →Mp.

Proof. First we show that Q = ν−1(Qp). Clearly Q ⊂ ν−1(Qp). Suppose x ∈ ν−1(Qp). Then there
exists s ∈ A \ p such that sx ∈ Q. That is, [sx] = 0 ∈ M/Q. If [x] 6= 0, we have s ∈ Ann[x] ⊂ p.
This contradiction enforces Q = ν−1(Qp).

Then we show that Np = Qp. Just need to show that for p′ 6= p and the p′ component Q′ of N ,
Q′

p =Mp. Since p is not embedded, p′ 6⊂ p. Then p /∈ V (p) = SuppM/Q′. So Mp/Q
′
p = 0.

Example A.2.17. If p is embedded, then its components may not be unique. For example, let M =

A = k[x, y]/(x2, xy). Then for every n ∈ Z≥1, (x) ∩ (x2, xy, yn) is a minimal primary decomposition
of (0) ⊂M .

Let A be a noetherian ring and p ⊂ A a prime ideal. We consider the p component of pn, which
is called n-th symbolic power of p, denoted by p(n). We have p(n) = pnAp ∩ A. In general, p(n) is not
equal to pn; see below example.

Example A.2.18. Let A = k[x, y, z, w]/(y2 − zx2, yz − xw) and p = (y, z, w). We have z =

y2/x2, w = yz/x ∈ p2Ap, whence p2Ap = (z, w) 6= p2.

Theorem A.2.19. Let A be a noetherian ring and M an A-module. Then for every p ∈ AssM ,
there is a p-primary submodule Q(p) such that

(0) =
⋂

p∈AssM

Q(p).

Proof. Consider the set
N := {N ⊂M : p /∈ AssN}.

Note that Ass
⋃
Ni =

⋃
AssNi by definition of associated prime ideals. Then it is easy to check

that N satisfies the conditions of Zorn’s Lemma. Hence N has a maximal element Q(p). We claim
that Q(p) is p-primary. If there is p′ 6= p ∈ AssM/Q(p), then there is a submodule N ′ ∼= A/p. Let
N ′′ be the preimage of N ′ in M . We have Q(p) ⊊ N ′′ and N ′′ ∈ N . This is a contradiction. By the
fact Ass

⋂
Ni =

⋂
AssNi, we get the conclusion.

Corollary A.2.20. Let A be a noetherian ring and M a finite A-module. Then every submodule
of M has a minimal primary decomposition.

A.3 Dimension and Depth
There are three numbers measuring the “size” of a local ring (A,m):

• dimA: the Krull dimension of A.

• depthA: the depth of A.



APPENDIX A. COMMUTATIVE ALGEBRA 9

• dimκ(m) TA,m: the dimension of Zariski tangent space TA,m := (m/m2)∨ as a κ(m)-vector space.

Somehow the Krull dimension is “homological” and the depth is “cohomological”.

Definition A.3.1. Let A be a noetherian ring. The height of a prime ideal p in A is defined as the
maximum length of chains of prime ideals contained in p, that is,

ht(p) := sup{n | ∃ a chain of prime ideals p0 ⊊ p1 ⊊ · · · ⊊ pn = p}.

The Krull dimension of A is defined as

dimA := max
p∈SpecA

ht(p).

Example A.3.2. Let A be a PID. For every two non-zero prime ideals p1 and p2, if p1 = t1A ⊂ p2 =

t2A, then t2 | t1 and hence p1 = p2. It follows that dimA = 1. Consequently, the ring of integers Z
and the polynomial ring k[T ] in one variable over a field have Krull dimension 1.

Definition A.3.3. Let A be a noetherian ring, I ⊂ A an ideal and M a finitely generated A-
module. A sequence t1, · · · , tn ∈ I is called an M-regular sequence in I if ti is not a zero divisor on
M/(t1, · · · , ti−1)M for all i.

Example A.3.4. Let A = k[x, y]/(x2, xy) and I = (x, y). Then depthI A = 0.

Definition A.3.5. Let A be a noetherian ring. For every p ∈ SpecA, p/p2 is a vector space over
κ(p). The Zariski’s tangent space TA,p of A at p is defined as (p/p2)∨, the dual κ(p)-vector space of
p/p2.

A.3.1 Artinian Rings and Length of Modules

Definition A.3.6. Let A be a ring and M an A module. A simple module filtration of M is a
filtration

M =M0 ⊋M1 ⊋ · · · ⊋Mn = 0

such that Mi/Mi−1 is a simple module, i.e. it has no submodule except 0 and itself. If M has a
simple module filtration as above, we define the length of M as n and say that M has finite length.

The following proposition guarantees the length is well-defined.

Proposition A.3.7. Suppose M has a simple module filtration M =M0,0 ⊋M1,0 ⊋ · · · ⊋Mn,0 = 0.
Then for any other filtration M = M0,0 ⊃ M0,1 ⊃ · · · ⊃ M0,m = 0 with m > n, there exist k < m

such that M0,k =M0,k+1.

Proof. We claim that there are at least 0 ≤ k1 < · · · < km−n < m satisfies that M0,ki = M0,ki+1.
Let Mi,j :=Mi,0 ∩M0,j. Inductively on n, we can assume that there exist k1, · · · , kn−m+1 such that
M1,k =M1,k+1. Consider the sequence

M0,0/M1,0 ⊃ (M0,1 +M1,0)/M1,0 ⊃ · · · ⊃ (M0,m +M1,0)/M1,0 = 0
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in M0,0/M1,0. Since M0,0/M1,0 is simple, there is at most one ki with M0,ki +M1,0 6=M0,ki+1 +M1,0.
And note that if M0,ki +M1,0 =M0,ki+1+M1,0 and M0,ki ∩M1,0 =M0,ki ∩M1,0, then M0,ki =M0,ki+1

by the Five Lemma.

Example A.3.8. Let A be a ring and m ∈ mSpecA. Then A/m is a simple module. Yang: To be
completed.

Proposition A.3.9. Let A be a ring and M an A-module. Then M is of finite length iff it satisfies
both a.c.c and d.c.c.

Proof. Note that if M has either a strictly ascending chain or a strictly descending chain, M is
of infinite length. Conversely, d.c.c guarantee M has a simple submodule and a.c.c guarantee the
sequence terminates.

Proposition A.3.10. The length l(−) is an additive function for modules of finite length. That
is, if we have an exact sequence 0 → M1 → M2 → M3 → 0 with Mi of finite length, then l(M2) =

l(M1) + l(M3).

Proof. The simple module filtrations of M1 and M3 will give a simple module filtration of M2.

Proposition A.3.11. Let (A,m) be a local ring. Then A is artinian iff mn = 0 for some n ≥ 0.

Proof. Suppose A is artinian. Then the sequence m ⊃ m2 ⊃ m3 ⊃ · · · is stable. It follows that
mn = mn+1 for some n. By the Nakayama’s Lemma A.1.7, mn = 0.

Conversely, we have
m ⊂ N ⊂

⋂
minimal prime ideal

p,

whence m is minimal.

Proposition A.3.12. Let A be a ring. Then A is artinian iff A is of finite length.

Proof. First we show that A has only finite maximal ideal. Otherwise, consider the set {m1 ∩m2 ∩
· · · ∩mk}. It has a minimal element m1 ∩ · · · ∩mn and for any maximal ideal m, m1 ∩ · · · ∩mn ⊂ m.
It follows that m = mi for some i. Let M = m1 ∩ · · · ∩mn be the Jacobi radical of A. Consider the
sequence M ⊃ M2 ⊃ · · · and by Nakayama’s Lemma, we have Mk = 0 for some k. Consider the
filtration

A ⊃ m1 ⊃ · · · ⊃ mk
1 ⊃ mk

1m2 ⊃ · · · ⊃ mk
1 · · ·mk

n = (0).

We have mk
1 · · ·m

j
i/m

k
1 · · ·m

j+1
i is an A/mi-vector space. It is artinian and then of finite length.

Hence A is of finite length.

Theorem A.3.13. Let A be a ring. Then A is artinian iff A is noetherian and of dimension 0.

Proof. Suppose A is artinian. Then A is noetherian by Proposition A.3.12. Let p ∈ SpecA. Then
A/p is an artinian integral domain. If there is a ∈ A/p is not invertible, consider (a) ⊃ (a2) ⊃ · · · ,
we see a = 0. Hence p is maximal and dimA = 0.

Suppose that A is noetherian and of dimension 0. Then every maximal ideal is minimal. In
particular, A has only finite maximal ideal p1, · · · , pn. Let qi be the pi-component of (0). Then we
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have A ↪→
⊕

iA/qi. We just need to show that A/qi is of finite length as A-module. If qi ⊂ pj, take
radical we get pi ⊂ qj and hence i = j. So A/qi is a local ring with maximal ideal piA/qi. Then
every element in piA/qi is nilpotent. Since pi is finitely generated, (piA/qi)k = 0 for some k. Then
A/qi is artinian and then of finite length as A/qi-module. Then the conclusion follows.

A.3.2 Dedekind Domains

Yang: To be completed

A.3.3 Krull’s Principal Ideal Theorem

Theorem A.3.14 (Krull’s Principal Ideal Theorem). Let A be a noetherian ring. Suppose f ∈ A
is not a unit. Let p be a minimal prime ideal among those containing f . Then ht(p) ≤ 1.

Proof. By replacing A by Ap, we may assume A is local with maximal ideal p. Note that A/(f) is
artinian since it has only one prime ideal p/(f).

Let q ⊊ p. Consider the sequence q(1) ⊃ q(2) ⊃ · · · , its image in A/(f) is stationary. Then there
exists n ∈ Z≥0 such that q(n)+(f) = q(n+1)+(f). For x ∈ q(n), we may write x = y+af for y ∈ q(n+1).
Then af ∈ q(n). Since q(n) is q-primary and f /∈ q, a ∈ q(n). Then we get q(n) = q(n+1) + fq(n).
That is, q(n)/q(n+1) = fq(n)/q(n+1). Note that f ∈ p, by Nakayama’s Lemma, q(n) = q(n+1). That is,
qnAq = qn+1Aq. By Nakayama’s Lemma again, qnAq = 0. It follows that qAq is minimal, whence
Aq is artinian. Therefore, q is minimal in A.

Corollary A.3.15. Let A be a noetherian local ring. Suppose f ∈ A is not a unit. Then
dimA/(f) ≥ dimA− 1. If f is not contained in a minimal prime ideal, the equality holds.

Proof. Let p0 ⊊ · · · ⊊ pn be a sequence of prime ideals. By assumption, f ∈ pn. If f ∈ p0, we get
a sequence of prime ideals in A/(f) of length n. Now we suppose f /∈ p0. Then there exists k ≥ 0

such that f ∈ pk+1 \ pk.
Choose q be a minimal prime ideal among those containing (pk−1, f) and contained in pk+1.

Then by Krull’s Principal Ideal Theorem A.3.14, qk ⊊ pk+1. Replace pk by qk, we have f ∈ qk \ pk−1

Repeat this process, we get a sequence p′0 ⊊ · · · ⊊ p′n such that f ∈ p′1. This gives a sequence
p′1 ⊊ · · · ⊊ p′n in A/(f). Hence we get dimA/(f) ≥ dimA− 1.

Since f is not contained in minimal prime ideal, preimage of a minimal prime ideal in A/(f)

has height 1. Hence a sequence of prime ideals in A/fA can be extended by a minimal prime ideal
in A. It follows that dimA/(f) + 1 ≤ dimA.

Proposition A.3.16. Let (A,m) be a local noetherian ring with residue field k. Then the following
inequalities hold:

depthA ≤ dimA ≤ dimk TA,m.

Proof. The first inequality is a direct corollary of Corollary A.3.15.
Let t1, · · · , tn be a κ(m)-basis of m/m2. Then we have m/(t1, · · · , tn) + m2 = 0, whence

m/(t1, · · · , tn) = m(m/(t1, · · · , tn)). It follows that m = (t1, · · · , tn) by Nakayama’s Lemma. By
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Corollary A.3.15,

n+ dimA/(t1, · · · , tn) ≥ n− 1 + dimA/(t1, · · · , tn−1) ≥ · · · ≥ 1 + dimA/(t1) ≥ dimA.

We conclude the result.

Definition A.3.17. Let X be a locally noetherian scheme and k ∈ Z≥0. We say that X verifies
property (Rk) or is regular in codimension k if ∀ξ ∈ X with codimZξ ≤ k,

dimκ(ξ) TX,ξ = dimOX,ξ.

We say that X verifies property (Sk) if ∀ξ ∈ X with depthOX,ξ < k,

depthOX,ξ = dimOX,ξ.

Example A.3.18. Let A be a noetherian ring. Then A verifies (S1) iff A has no embedded point.
Suppose A verifies (S1). If p ∈ AssA, every element in p is a zero divisor. Then depthAp = 0.

It follows that dimAp = 0 and then p is minimal.
Suppose A has no embedded point. Let p ∈ SpecA with depthAp = 0. This means every

element in pAp is a zero divisor. Then

p ⊂ {zero divisors in A} =
⋃

minimal prime ideals
q.

By Proposition A.1.2, p = q for some minimal q, whence dimAp = 0.

Example A.3.19. Let A be a noetherian ring. Then A is reduced iff it verifies (R0) and (S1).
Suppose A is reduced. Let p1, · · · , pn be all minimal prime ideals of A. We have

⋂
pi = N = (0),

where N is the nilradical of A. Hence A has no embedded point. Since Ap is artinian, local and
reduced, Ap is a field and hence regular.

Conversely, let AssA be equal to {p1, · · · , pn}. Then every pi is minimal by (S1). Let f be in
N. Then the image of f in Api is 0 since by (R0), Api is a field. It follows that f ∈ qi, where qi is
the pi component of (0) in A. Hence f ∈

⋂
qi = (0). That is, A is reduced.

A.3.4 Cohen-Macaulay rings

Definition A.3.20 (Cohen-Macaulay). A noetherian local ring (A,m) is called Cohen-Macaulay if
dimA = depthA. A noetherian ring A is called Cohen-Macaulay if for every prime ideal p ∈ SpecA,
the localization Ap is Cohen-Macaulay. This is equivalent to that A verifies (Sk) for all k ≥ 0.

Example A.3.21 (Non Cohen-Macaulay rings). Yang: To be completed.

Corollary A.3.22. Let A be a noetherian ring, M a finite A-module and a ∈ A an M -regular
element. Then depthM = depthM/aM + 1.

Corollary A.3.23. Let A be a noetherian ring a ∈ A a nonzero divisor. Then A verifies (Sd) iff
A/aA verifies (Sd−1).
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Definition A.3.24. An ideal I of a noetherian ring A is called unmixed if

ht(I) = ht(p), ∀p ∈ Ass(A/I).

Here ht(I) is defined as
ht(I) := inf{ht(p) : I ⊂ p}.

We say that the unmixedness theorem holds for a noetherian ring A if any ideal I ⊂ A generated
by ht(I) elements is unmixed. We say that the unmixedness theorem holds for a locally noetherian
scheme X if OX,ξ is unmixed for any point ξ ∈ X.

Theorem A.3.25. Let X be a locally noetherian scheme. Then the unmixedness theorem holds for
X if and only if X is Cohen-Macaulay.

Proof. We can assume that X = SpecA is affine.
Suppose X is Cohen-Macaulay. Let I ⊂ A be an ideal generated by a1, · · · , ar with r = ht(I).

We claim that a1, · · · , ar is an A-regular sequence. If so, we get that the unmixedness theorem holds
for A by applying Example A.3.18 on A/I. Since ht(a1, · · · , ar−1) ≤ r− 1 by Krull’s Principal Ideal
Theorem A.3.14 and ht(a1, · · · , ar) = r ≤ ht(a1, · · · , ar−1)+1, we have ht(a1, · · · , ar−1) = r−1. By
induction on r, we can assume that a1, · · · , ar−1 is an A-regular sequence. Hence any prime ideal
p ∈ AssA/(a1, · · · , ar−1) has height r−1. Now suppose ar is a zero divisor in A/(a1, · · · , ar−1). Then
there exists a prime ideal p ∈ AssA/(a1, · · · , ar−1) such that ar ∈ p. Then I ⊂ p and ht(I) ≤ r− 1.
This contradicts that ht(I) = r.

Suppose the unmixedness theorem holds for A. Let p ∈ SpecA be a prime ideal with ht(p) = r.
Then p ∈ AssA if and only if ht(p) = 0. If r > 0, there is a nonzero divisor a ∈ p. By Krull’s
Principal Ideal Theorem A.3.14, ht(pA/aA) = r − 1. Inductively, we can find a regular sequence
a1, · · · , ar in p. Then depthAp = r.

Theorem A.3.26. Let X be a locally noetherian scheme. Suppose that X is Cohen-Macaulay. Let
F ⊂ X be a closed subset of codimension ≥ k. Then the restriction H i(X,OX) → H i(X \ F,OX)
is an isomorphism.

Proof. Yang: To be completed.

A.3.5 Regular rings

Definition A.3.27. A noetherian ring A is said to be regular at p ∈ SpecA if we have

dimκ(p) TA,p = dimAp,

where dimAp is the Krull dimension of the local ring Ap.
A noetherian ring A is said to be regular if it is regular at every prime ideal p ∈ SpecA. This is
equivalent to the condition that A verifies (Rk) for all k ≥ 0.
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Remark A.3.28. A noetherian ring A is regular if and only if it is regular at every maximal ideal
m ∈ mSpecA. The proof uses homological tools; see Theorem B.3.17 and Corollary B.3.18.

Definition A.3.29. Let A be a noetherian ring that is regular at p ∈ SpecA. A sequence t1, · · · , tn ∈
p is called a regular system of parameters at p if their images form a basis of the κ(p)-vector space
p/p2.

Proposition A.3.30. Let (A,m) be a noetherian local ring that is regular at m. Let t1, · · · , tn be
a regular system of parameters at m, pi = (t1, · · · , ti) and p0 = (0). Then pi is a prime ideal of
height i, and A/pi is a regular local ring for all i. In particular, regular local ring is integral, and
the regular system of parameters t1, · · · , tn is a regular sequence in A.

Proof. By the Krull’s Principal Ideal Theorem A.3.14, we have

n− 1 = dimA− 1 ≤ dimA/(t1) ≤ dimκ(m/(t1)) TA/(t1),m/(t1) ≤ n− 1.

Hence dimA/(t1) = n − 1 and ht(t1) = 1. Since t2, · · · , tn generate m/(t1), we have that A/(t1) is
regular at m/(t1) and the images of t2, · · · , tn form a regular system of parameters.

For integrality, we induct on the dimension of A. If dimA = 0, then A is a field and hence
integral. Suppose dimA > 0, let q be a minimal prime ideal of A. Then t1 6∈ q. We have

n− 1 = dimA− 1 ≤ dimA/(q+ t1A) ≤ dimκ(q/(t1)) TA/(q+t1A),q/(t1) ≤ n− 1.

By similar arguments, we have A/(q+ t1A) is regular at m/(q+ t1A). By induction hypothesis, both
of A/t1A and A/(q + t1A) are integral and of dimension n− 1. Hence t1A = t1A + q, i.e. q ⊂ t1A.
For every a = bt1 ∈ q, we have b ∈ q since t1 6∈ q. Then q ⊂ t1q ⊂ mq. By Nakayama’s Lemma,
q = 0, whence A is integral.

Corollary A.3.31. A regular noetherian ring is Cohen-Macaulay.

Corollary A.3.32. A regular noetherian ring is normal.

Remark A.3.33. Indeed we can show a stronger result: a noetherian regular local ring is a UFD;
see Yang: ref.

A.4 Finite Algebra and Normality
Let R be a ring and A be an R-algebra. We say that A is of finite type over R if there exists a

surjective R-algebra homomorphism R[T1, · · · , Tn]→ A for some n ≥ 0. We say that A is finite over R
if it is finite as an R-module.

A.4.1 Finite algebra

Let A be a ring and B a finite A-algebra.
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Example A.4.1. Let K be a number field. Then OK is a finite Z-algebra. Yang: To be completed.

Lemma A.4.2. Let A ⊂ B be noetherian rings such that B is finite over A. Then the induced
morphism SpecB → SpecA is surjective.

Proof. For p ∈ SpecA, let S := A − p and denote S−1B by Bp. Then we have Ap ↪→ Bp and Bp is
finite over Ap. Let PBp be a maximal ideal of Bp. We claim that PBp ∩ Ap is maximal. Indeed,
consider Ap/(P∩Ap) ↪→ Bp/PBp, the latter is finite over the former. This enforces Ap/(PBp ∩Ap)

be a field. Hence PBp ∩ Ap = pAp, and then P ∩ A = p.

Proposition A.4.3. Let A ⊂ B be noetherian rings such that B is finite over A. Then dimA =

dimB.

Proof. If we have a sequence P1 ⊊ P2 of prime ideals in B, then there exists f ∈ P2 \P1. Since B
is finite over A, there exist a1, · · · , an ∈ A such that

fn + a1f
n−1 + · · ·+ an = 0.

Then an ∈ P2∩A. If an ∈ P1, fn−1+ · · ·+an1 ∈ P1 since f /∈ P1. Then an−1 ∈ P2. Repeat the
process, it will terminate, whence P1∩A ⊊ P2∩A. Otherwise, we have fn ∈ a1B+ · · ·+anB ⊂ P1.

Conversely, suppose we have p1, p2 ∈ SpecA with p1 ⊊ p2. Choose P1 ∈ SpecB such that
P1 ∩ A = p1, then we have A/p1 ⊂ B/P1. Let P2 be the preimage of the prime ideal in B/P1

which is over image of p2 in A/p1. Proposition A.4.2 guarantees that such P2 exists. Then we get
P1 ⊊ P2. Repeat this progress, we get dimB ≥ dimA.

Yang: To be completed

Definition A.4.4. An integral domain A is called normal if it is integrally closed in its field of
fractions Frac(A).

Lemma A.4.5. Let A ⊂ C be rings and B the integral closure of A in C, S a multiplicatively closed
subset of A. Then the integral closure of S−1A in S−1C is S−1B.

Proof. For every b ∈ B and ∀s ∈ S, there exists ai ∈ A s.t.

bn + a1b
n−1 + · · ·+ an = 0.

Then (
b

s

)n

+
a1
s1

(
b

s

)n−1

+ · · ·+ an
sn

= 0.

Hence b/s is integral over S−1A, S−1B is integral over S−1A.
If c/s ∈ S−1C is integral over S−1A, then ∃ai ∈ S−1A s.t.(c

s

)n
+ a1

(c
s

)n−1

+ · · ·+ an = 0.

Then
cn + a1sc

n−1 + · · ·+ ans
n = 0 ∈ S−1C
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Then ∃t ∈ S s.t.
t(cn + a1sc

n−1 + · · ·+ ans
n) = 0 ∈ C.

Then
(ct)n + a1st(ct)

n−1 + · · ·+ ans
ntn = tn(cn + a1sc

n−1 + · · ·+ ans
n) = 0.

Hence ct is integral over A, then ct ∈ B. Then c/s = (ct)/(st) ∈ S−1B. This completes the
proof.

Proposition A.4.6. Normality is a local property. That is, for an integral domain A, TFAE:

(i) A is normal.

(ii) For any prime ideal p ∈ SpecA, the localization Ap is normal.

(iii) For any maximal ideal m ∈ mSpecA, the localization Am is normal.

Proof. When A is normal, Ap is normal by Lemma A.4.5.
Assume that Am is normal for every m ∈ mSpecA. If A is not normal, let Ã be the integral

closure of A in FracA, Ã/A is a nonzero A-module. Suppose p ∈ Supp Ã/A and p ⊂ m. We have
Ãm/Am = 0 and Ãp/Ap = (Ãm/Am)p 6= 0. This is a contradiction.

Proposition A.4.7. Let A be a normal ring. Then A[X] is also normal.

Definition A.4.8. A scheme X is called normal if the local ring OX,ξ is normal for any point ξ ∈ X.
A ring A is called normal if SpecA is normal.

Remark A.4.9. For a general ring A, let S := A \ (
⋃

p∈AssA p) =
⋂

p∈AssAA \ p. Then S is a
multiplicative set. The localization S−1A is called the total ring of fractions of A.

Suppose A is reduced and AssA = {p1, · · · , pn}. Denote its total ring of fractions by Q. Note
that elements in Q are either unit or zero divisor. Hence any maximal ideal m is contained in

⋃
piQ,

whence contained in some piQ. Thus piQ are maximal ideals. And we have
⋂
piQ = 0. By the

Chinese Remainder Theorem, we have Q =
∏
Q/piQ =

∏
Api .

Let A be a reduced ring with total ring of fractions Q. Then A is normal iff A is integral closed
in Q. If A is normal, then for every p ∈ SpecA, Ap is integral. Then there is unique minimal
prime ideal pi ⊂ p. In particular, any two minimal prime ideal are relatively prime. By the Chinese
Remainder Theorem, A =

∏
A/pi. Just need to check A/pi is integral closed in Api . This is clear

by check pointwise.
Conversely, suppose A is integral closed in Q. Let ei be the unit element of Api . It belongs to

A since e2i − ei = 0. Since 1 = e1 + · · ·+ en and eiej = δij, we have A =
∏
Aei. Since Aei is integral

closed in Api , it is normal. Hence A is normal.

Lemma A.4.10. Let A be a normal ring. Then A verifies (R1) and (S2).

Proof. Since all properties are local, we can assume A is integral and local.
For (S2), by Example ??, we only need to show that AssAA/f has no embedded point. Let
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p = (f : g) =∈ AssAA/fA and t := f/g ∈ FracA. After Replacing A by Ap, we can assume
that p is maximal. By definition, t−1p ⊂ A. If t−1p ⊂ p, suppose p is generated by (x1, · · · , xn)
and t−1(x1, · · · , xn)T = Φ(x1, · · · , xn)T for Φ ∈ Mn(A). There is a monic polynomial χ(T ) ∈ A[T ]
vanishing Φ. Then χ(t−1) = 0 and t−1 ∈ A. This is impossible by definition of t. Then t−1p = A,
and p = (t) is principal. By Krull’s Principal Ideal Theorem A.3.14, ht(p) = 1.

Now we show that A verifies (R1). Suppose (A,m) is local of dimension 1. Choosing a ∈ m,
A/a is of dimension 0. Then by A.3.11, mn ⊂ aA for some n ≥ 1. Suppose mn−1 6⊂ aA. Choose
b ∈ mn−1 \ aA and let t = a/b. By construction, t−1 /∈ A and t−1m ⊂ A. After similar argument, we
see that m = tA, whence A is regular.

Lemma A.4.11. Let (A,m) be a noetherian local ring of dimension 1. Then A is normal iff A is
regular.

Proof. By lemma A.4.10, we just need to show that regularity implies normality.
Let t ∈ m\m2. Since A is regular, m = (t). Let I ⊂ m be an ideal. If I ⊂

⋂
nm

n, then for every
a ∈ I, there exists an such that a = ant

n. Then we get an ascending chain of ideals (a1) ⊂ (a2) ⊂ · · · .
Hence a = 0 by Nakayama’s Lemma. Suppose I is not zero. Then there is some n such that I ⊂ mn

and I 6⊂ mn+1. For every atn ∈ I \ mn+1, a /∈ m, whence a is a unit in A. Then I = (tn). Hence A
is PID and hence normal.

Proposition A.4.12. Let A be a noetherian integral domain of dimension ≥ 1 verifying (S2). Then

A =
⋂

p∈SpecA,ht(p)=1

Ap.

Proof. Clearly A ⊂
⋂
Ap. Let t = f/g ∈

⋂
Ap. Since f ∈ gAp and we have gA =

⋂
(gAp ∩ A),

f ∈ gA. It follows that t ∈ A.

Theorem A.4.13 (Serre’s criterion for normality). Let X be a locally noetherian scheme. Then X
is normal if and only if it verifies (R1) and (S2).

Proof. One direction has been proved in Lemma A.4.10. Suppose X verifies (R1) and (S2). Again
we can assume X = SpecA is affine and A is local. By Remark A.4.9, we just need to show that A
is integral closed in its total ring of fractions Q. Suppose we have(a

b

)n
+ c1

(a
b

)n−1

+ · · ·+ cn = 0 ∈ Q.

Since A verifies (S2), bA =
⋂
ν−1
p (bpAp). So it is sufficient to show that ap ∈ bpAp with ht(p) = 1.

Note that Ap is regular and hence normal by Lemma A.4.11. Then above equation gives us desired
result.
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A.5 Smoothness

A.5.1 Modules of differentials and derivations

In this subsection, let R be a ring and A an R-algebra.

Definition A.5.1 (Derivation). A derivation of A over R is an R-linear map ∂ : A → M with an
A-module such that for all a, b ∈ A, we have

∂(ab) = a∂(b) + b∂(a).

Given the module M , the set of all derivations of A over R into M forms an A-module, denoted by
DerR(A,M).

Given a module homomorphism f : M → N of A-modules and a derivation ∂ ∈ DerR(A,M), the
map f ◦ ∂ is a derivation of A over R into N .

Proposition A.5.2. The functor DerR(A,−) is representable. The representing object is denoted
by ΩA/R, which is called the module of differentials of A over R.

Proof. First suppose A is a free R-algebra with a set of generators aλ, λ ∈ Λ. Then an R-derivation
∂ ∈ DerR(A,M) is uniquely determined by its values on the generators aλ. Let

ΩA/R :=
⊕
λ∈Λ

A · daλ

and d : A→ ΩA/R be the R-derivation defined by aλ 7→ daλ. For any R-derivation ∂ ∈ DerR(A,M),
we can define a unique A-module homomorphism Φ∂ : ΩA/R → M by sending daλ to ∂(aλ) such
that ∂ = Φ∂ ◦ d. This gives a bijection

DerR(A,M) ∼= HomA(ΩA/R,M), ∂ 7→ Φ∂ .

Now suppose A = F/I is an arbitrary R-algebra, where F is a free R-algebra and I is an ideal
of F . Then we can define the module of differentials

ΩA/R :=
(
ΩF/R ⊗F A

)/∑
f∈I

A · df.

The R-linear map dA : F ⊗F A
dF−→ ΩF/R ⊗F A→ ΩA/R is a derivation of A over R.

For any R-derivation ∂ ∈ DerR(A,M), note that F → A
∂−→ M is an R-derivation of F over R

into M . Then we get an F -module homomorphism ΩF →M . It gives an A-module homomorphism
ΩF ⊗F A→ M, df ⊗ 1 7→ ∂f . This map factors into ΩF ⊗F A→ ΩA/R and Φ∂ : ΩA/R → M . Since
Φ∂ is A-linear and ΩA/R is generated by daλ as A-module, such Φ∂ is unique.

Corollary A.5.3. Suppose A is of finite type over R. Then the module of differentials ΩA/R is a
finitely generated A-module.
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Remark A.5.4. Let B be an A-algebra, M an A-module and N a B-module. If there is a ho-
momorphism of A-modules M → N , then we can extend it to a homomorphism of B-modules
M ⊗A B → N by sending m ⊗ b to m · b. And such extension is unique in the sense of following
commutative diagram:

M //

��

N

M ⊗A B
∃!

::uuuuuuuuu

.

Hence we get a natural bijection

HomA(M,N) ∼= HomB(M ⊗A B,N).

Proposition A.5.5. Let A,R′ be R-algebras and A′ := A⊗R R′. Then the module of differentials
ΩA′/R′ is isomorphic to ΩA/R ⊗A A′.

Proof. We check the universal property of ΩA/R ⊗A A′. First, the map

dA′ : A⊗R R′ → ΩA/R ⊗R R′ ∼= ΩA/R ⊗A A′, a⊗ r 7→ da⊗ r

is an R′-derivation of A′ into ΩA/R ⊗A A′. For any R′-derivation ∂′ : A′ → M into an A′-module
M , we can compose it with the homomorphism A′ → A and get an R-derivation ∂ : A → M . By
the universal property of ΩA/R, there is a unique A-module homomorphism Φ : ΩA/R → M such
that ∂ = Φ ◦ dA. Then we can extend it to an A′-module homomorphism Φ′ : ΩA/R ⊗A A′ → M by
Remark A.5.4. By the construction, we have Φ′ ◦ dA′ = ∂′.

Proposition A.5.6. Let A be an R-algebra and S a multiplicative set of A. Then we have an
isomorphism

ΩS−1A/R
∼= S−1ΩA/R.

Proof. Let
dS−1A : S−1A→ S−1ΩA/R,

a

s
7→ sda− ads

s2
.

By direct computation, dS−1A is an R-derivation of S−1A over R into S−1ΩA/R. For any R-
derivation ∂ : S−1A → M into an S−1A-module M , we can get an S−1A-module homomorphism
Φ′ : S−1ΩA/R →M as proof of Proposition A.5.5. We have

∂(s · a
s
) = s∂(

a

s
) +

a

s
∂s.

It follows that
∂(
a

s
) =

s∂a− a∂s
s2

=
sΦ′(da)− aΦ′(ds)

s2
= Φ′(

sda− ads
s2

).

Thus, Φ′ ◦ dS−1A = ∂.

Theorem A.5.7. Let A be an R-algebra and B an A-algebra. Then there is a natural short exact
sequence

ΩA/R ⊗A B → ΩB/R → ΩB/A → 0
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of B-modules.

Proof. Let dA/R : A→ ΩA/R be the R-derivation of A over R. The map A→ B
dB/R−−−→ ΩB/R induces

a B-linear map
u : ΩA/R ⊗A B → ΩB/R, dA/R(a)⊗ b 7→ bdB/R(a).

The map dB/A is an A-derivation and hence R-derivation. Then it induces a B-linear map

v : ΩB/R → ΩB/A, dB/R(b) 7→ dB/A(b).

Since ΩB/A is generated by elements of the form dB/A(b) for b ∈ B, the map v is surjective.
And clearly dB/A(a) = adB/A(1) = 0 for a ∈ A.

Consider the composition B
dB/R−−−→ ΩB/R → ΩB/R/ Imu. For every a ∈ A, b ∈ B, we have

[dB/R(ab)] = [bdB/R(a) + adB/R(b)] = [bdB/R(a)] + [adB/A(b)] = [adB/A(b)].

Hence it is indeed an A-derivation of B. Then it induces a B-linear map

ϕ : ΩB/A → ΩB/R/ Imu, dB/A(b) 7→ [dB/R(b)].

The map ϕ is surjective since ΩB/R is generated by elements of the form dB/R(b) for b ∈ B. Note
that the composition

ΩB/A
φ−→ ΩB/R/ Imu→ ΩB/A/Ker v

is the identity map. Thus, ϕ is injective and hence an isomorphism. In particular, we have Ker v =

Imu.
Remark A.5.8. The exact sequence in Theorem A.5.7 is left exact if and only if every R-derivation
of A into B-module extends to an R-derivation of B into B-module.

Yang: To be completed.

Theorem A.5.9. Let A be an R-algebra and I an ideal of A. Set B := A/I. Then there is a natural
short exact sequence

I/I2 → ΩA/R ⊗A B → ΩB/R → 0

of B-modules.

Proof. Suppose A = F/b for some free R-algebra F and an ideal b of F . Let a be the preimage of
I in F . Let db (resp. da) denote the image of b (resp. a) in ΩF/R. Then we have

ΩA/R ⊗A B = ΩF/R ⊗F B/(db⊗F B), ΩB/R = ΩF/R ⊗F B/(da⊗F B).

Clearly
I/I2 ∼= (a/b)⊗F B → (da⊗F B)/(db⊗F B)

is surjective. Then the exact sequence follows.
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Definition A.5.10. Let k be a field and A an integral k-algebra of finite type of dimension n. We
say A is smooth at p ∈ SpecA if the module of differentials ΩA,p is a free Ap-module of rank n.

Example A.5.11. Let K/k be a finite generated field extension and k′ be the algebraic closure of k
in K. Then

dimK ΩK/k = trdeg(K/k) + dimk′ Ωk′/k,

and dimk′ Ωk′/k = 0 if and only if k′ is separable over k.
First suppose K = k′ is algebraic over k. Suppose k′/k is separable. For every α ∈ k′, suppose

f(α) = 0 for f ∈ k[T ]. Then df(α) = f ′(α)dα = 0. By the separability of k′/k, we have f ′(α) 6= 0.
It follows that dα = 0. Conversely, let α ∈ k′ be a inseparable element over k. Since k[α] →
k[α], αn 7→ nαn−1 is a non-zero R-derivation, we have Ωk[α]/k 6= 0. By induction on number of
generated elements, choosing a middle field k ⊂ k′′ ⊂ k′, at least one of Ωk′′/k and Ωk′/k′′ is non-zero.
Then ΩK/k 6= 0 by Theorem A.5.7.

Then suppose k′ = k. By the Noether’s Normalization Lemma, we can find a finite set of
elements T1, · · · , Tn ∈ K such that K is algebraic over k′(T1, . . . , Tn). Note that we can choose Ti such
that K/k′(T1, · · · , Tn) is separable. To see this, if α ∈ K is an inseparable element over k′(T1, · · · , Tn),
then by replacing a suitable Ti with α, we reduce the inseparable degree of K/k′(T1, · · · , Tn).

Since K/k′(T1, · · · , Tn) is finite, every k-derivation of k′(T1, · · · , Tn) into K-module extends to a
k-derivation of K into K-module. Then by Remark A.5.8, we have

0→ Ωk′(T1,··· ,Tn)/k ⊗k′(T1,··· ,Tn) K→ ΩK/k → ΩK/k′(T1,··· ,Tn) → 0.

Finally, note that every k-derivation ∂ of k′ into K-module can be extended to k′[T1, · · · , Tn] by
setting ∂Ti = 0. Thus, we have

0→ Ωk′/k ⊗k′ k′[T1, · · · , Tn]→ Ωk′[T1,··· ,Tn]/k → Ωk′[T1,··· ,Tn]/k′ → 0.

This follows that
dimK ΩK/k = dimK ΩK/k′ + dimk′ Ωk′/k.

A.5.2 Applications to affine varieties

Let k be arbitrary field, A = k[T1, . . . , Tn] and m a maximal ideal of A such that κ(m) is separable over
k. We try to give an explanation of Zariski’s tangent space at m using the language of derivation. We
know that ΩA/k =

⊕n
i=1AdTi, thus ΩAm/k ∼=

⊕n
i=1AmdTi. Then

Derk(Am, Am) ∼= Homk(ΩAm/k, Am) ∼=
n⊕
i=1

Am∂i,

where ∂i ∈ Derk(Am, Am) is the derivation defined by dTi 7→ 1 and dTj 7→ 0 for j 6= i. It coincides with
the usual derivation f 7→ ∂f/∂Ti. Consider the restriction of ∂i to m and take values in the residue
field κ(m), we get

Φ : m
(∂1,··· ,∂n)T−−−−−−→ Anm → κ(m)n.
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Since κ(m) is separable over k, we claim that KerΦ = m2. Indeed, by Remark A.5.12, we can write
every f ∈ m \m2 as

∑
i aigi. Then

∂f

∂Ti
= ai

∂gi
∂Ti

+ gi
∂ai
∂Ti

.

Since gi is separable, the image of ∂gi/∂Ti in κ(m) is not zero. Hence Φ(f) 6= 0. By the claim, Φ

induces an isomorphism m/m2 ∼= κ(m)n of κ(m)-vector spaces. Then we get

TA,m = (m/m2)∨ ∼=
n⊕
i=1

κ(m) · ∂i|x,

where x ∈ An
k is the point corresponding to m. This coincides with the usual tangent space at x in

language of differential geometry.

Remark A.5.12. Let k be arbitrary field, A = k[T1, · · · , Tn] and gi irreducible polynomials in one
variable Ti over k. Then for every f ∈ A, we can write

f =
∑

I=(i1,··· ,in)∈Zn
≥0

aIg
i1
1 · · · ginn , aI ∈ A, degTi aI ≤ deg gi.

This is called the Taylor expansion of f with respect to g1, · · · , gn.
When n = 1, it follows from division algorithm. For n > 1, we can use induction on n. Let

K = k(T1, · · · , Tn−1). Then we can write f as

f =
r∑
i=0

aig
i
n, ai ∈ K[Tn], deg ai < deg gn.

Comparing the coefficients of two sides from the highest degree of Tn to the lowest degree, we see
that

ai ∈ k[T1, · · · , Tn−1].

By induction hypothesis, the conclusion follows.

Let B = A/I be a k of finite type, I = (F1, . . . , Fm) ⊂ m and n the image of m in B. We have an
exact sequence of κ(m)-vector spaces

0→ I/(I ∩m2)→ m/m2 → n/n2 → 0.

It induces an isomorphism
TB,n ∼= {∂ ∈ TA,m : ∂(f) = 0, ∀f ∈ I}.

The Jacobian matrix of F1, . . . , Fm is the m× n matrix

J(F1, . . . , Fm) :=

(
∂Fi
∂Tj

)
1≤i≤m,1≤j≤n

with entries in B.

Theorem A.5.13. Setting as above. Then B is regular at n if and only if the Jacobian matrix J

has maximal rank n− dimBn after taking values in the residue field κ(m).
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Proof. We have an exact sequence

0→ TB,n → TA,m
Ψ−→ κm → 0,

where Ψ sends ∂ ∈ TA,m to (∂(F1), . . . , ∂(Fm))
T . Note that the matrix of Ψ is just JT , the transpose

of the Jacobian matrix. Hence

rank J = n− dimκ TB,n ≤ n− dimBn

and the equality holds if and only if B is regular at n.

Remark A.5.14. If κ(m) is not separable over k, then we still have the inequality

rank J ≤ n− dimBn.

Indeed, in any case, we have an exact sequence

0→ I/(I ∩m2)→ m/m2 → n/n2 → 0.

Hence dimκ I/(I ∩m2) = n− dimBn. There is a κ(m)-linear map

I/(I ∩m2)→ κ(m)n, [f ] 7→ (∂1(f), . . . , ∂n(f))
T ,

and every row of the Jacobian matrix J is in the image of this map. Thus, the rank of J is at most
n− dimBn.

Hence if rank J = n − dimBn, we can still see that B is regular at n. However, the converse
does not hold in general.

Proposition A.5.15. Let k be a field, k the algebraic closure of k, A a k-algebra of finite type and
Ak := A ⊗k k. Yang: Suppose Ak is integral. Let m ∈ mSpecA and m′ be a maximal ideal of Ak

lying over m. Then

(a) If Ak is regular at m′, then A is regular at m;

(b) suppose κ(m) is separable over k, the converse holds.

Proof. Regarding Jm and Jm′ as matrices with entries in k, they are the same and hence have the
same rank. If Ak is regular at m′, since κ(m) = k, then rank Jm′ = n − dimAk,m′ . Note that
dimAk,m′ = trdeg(K (Ak)/k) = trdeg(K (A)/k) = dimAm, we have rank Jm = n − dimAm. Hence
A is regular at m.

Conversely, suppose A is regular at m and κ(m) is separable over k. Then rank Jm = n−dimAm.
Hence Ak is regular at m′. Yang: To be modified.

Proposition A.5.16. Let k be a field and A an integral k-algebra of finite type and of dimension
n. Let k be the algebraic closure of k and Ak := A ⊗k k. Then A is smooth at p ∈ SpecA if and
only if Ak is regular at every m′ over m.
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Proof. Since ΩAk/k ∼= ΩA/k⊗AAk is free of rank n if and only if ΩA/k is free of rank n, we can assume
that k = k. If A is smooth at p, then ΩAp/k ∼=

⊕
Apdfi is free of rank n. Let Pi ∈ Derk(Am, Am) be

the derivation defined by dfi 7→ 1 and dTj 7→ 0 for j 6= i. Then we have ∂ifj = δij for 1 ≤ i, j ≤ n.
Then similar to above argument, we have an isomorphism

m/m2 (∂1,...,∂n)T−−−−−−→ kn.

This shows that Ak is regular at m.
Conversely, suppose Ak is regular at m. Note that m/m2 → ΩA,k ⊗A k is surjective since

ΩAk/k = 0. Then by Nakayama’s lemma, ΩAm/k is generated by n elements as an Am-module.
Note that dimK (A) ΩK (A)/k = trdeg(K (A)/k) = dimAm = n. Yang: By induction on transcen-

dental degree.
Yang: By Nakayama’s Lemma, ΩAm/k is free of rank n as an Am-module.
Yang: To be completed.

Example A.5.17. Let k be an imperfect field of characteristic p > 2. Suppose α = βp ∈ k and β is
not in k. Let A = k[x, y]/(x2 − yp − α) and m = (x, yp − α) = (x). Note that m is principal, so A is
regular at m. However,

Jm =

(
∂

∂x
(x2 − yp − α), ∂

∂y
(yp − α)

)
= (2x, 0) = (0, 0) ∈M1×2(κ(m)).

Thus, A is not smooth at m. From the view of differentials, we have

ΩAm/k = Amdx⊕ Amdy/Am · xdx = κ(m)dx⊕ Amdy,

which is not free as an Am-module.

A.6 Formal Completion

A.6.1 Formal completion of rings and modules

Definition A.6.1. Let A be a ring and T a topology on A. We say that (A, T ) is a topological ring
if the operations of addition and multiplication are continuous with respect to the topology T .
Given a topological ring A. A topological A-module is a pair (M, TM) where M is an A-module
and TM is a topology on M such that the addition and scalar multiplication is continuous. The
morphisms of topological A-modules are the continuous A-linear maps. They form a category
denoted by TopModA.

Definition A.6.2. Let A be a ring, I an ideal of A and M an A-module. The I-adic topology on
M is the topology defined by the basis of open sets x+ IkM for all x ∈M,k ≥ 0.
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Example A.6.3. Let A = Z be the ring of integers and p a prime number. The p-adic topology on
Z is defined by the metric

d(x, y) := ‖x− y‖p := p−v(x−y),

where v is the valuation defined by the ideal pZ.
Note that for I-adic topology, any homomorphism f : M → N of A-modules is continuous since

f(x + IkN) ⊂ f(x) + IkM for all x ∈ M and k ≥ 0. Hence the forgotten functor TopModA → ModA
gives an equivalence of categories.

Let M be an A-module equipped with the I-adic topology. Note that M is Hausdorff as a topological
space if and only if

⋂
n≥0 I

nM = {0}. In this case, we say that M is I-adically separated.

When M is I-adically separated, we can see that M is indeed a metric space. Fix r ∈ (0, 1). For
every x 6= y ∈M , there is a unique k ≥ 0 such that x− y ∈ IkM but x− y /∈ Ik+1M . We can define a
metric on M by

d(x, y) := rk.

This metric induces the I-adic topology on M .

To analyze the I-adic separation property of M , the following Artin-Rees Lemma is particularly
useful.

Theorem A.6.4 (Artin-Rees Lemma). Let A be a noetherian ring, I an ideal of A, M a finite
A-module and N a submodule of M . Then there exists an integer r such that for all n ≥ 0, we have

(Ir+nM) ∩N = In(IrM ∩N).

Proof. Let
A′ := A⊕ IX ⊕ I2X2 ⊕ · · · ⊂ A[X]

be a graded A-algebra. Note that if I = (a1, . . . , ak), then A′ = A[a1X, . . . , akX]. Hence A′ is a
noetherian ring. Let

M ′ :=M ⊕ IMX ⊕ I2MX2 ⊕ · · ·

be a graded A′-module. Then M ′ is a finite A′-module since it is generated by M and M is finite
over A. Let

N ′ := N ⊕ (IM ∩N)X ⊕ (I2M ∩N)X2 ⊕ · · ·

be a graded submodule of M ′. Then N ′ is finite over A′. Suppose N ′ =
∑
A′xi with xi ∈ IdiM ∩N .

Choose r ≥ di for all i. Then the degree n+ r part of N ′ is equal to degree n part of A′ timing the
degree r part of N ′. That is, for all n ≥ 0, In+rM ∩N = In(IrM ∩N).

Corollary A.6.5. Let A be a noetherian ring, I an ideal of A, M a finite A-module and N a
submodule of M . Then the subspace topology on N induced by N ⊂ M coincides with the I-adic
topology on N .

Proof. This is a direct consequence of the Artin-Rees Lemma.
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Corollary A.6.6. Let A be a noetherian ring, I an ideal of A, and M a finite A-module. Let
N =

⋂
n≥0 I

nM . Then IN = N . In particular, if I ⊂ rad(A), then M is I-adically separated.

Proof. We have that

N = In+rM ∩N = In(IrM ∩N) = InN ⊂ IN ⊂ N.

The latter conclusion follows from the Nakayama’s Lemma.

Definition A.6.7. Let A be a ring, I an ideal of A and M an A-module. We say that M is complete
(with respect to I-adic topology) if M is I-adically separated and complete as a metric space with
respect to the metric induced by the I-adic topology.

Lemma A.6.8. Let A be a ring, I an ideal of A and M an A-module. Then the inverse limit

M̂ := lim←−(· · · →M/InM →M/In−1M → · · · →M/IM)

exists in the category of A-modules. Moreover, Â is an A-algebra and M̂ is an Â-module.

Proof. Let

M̂ :=

{
(xn) ∈

∏
n≥0

M/InM
∣∣∣xn+1 7→ xn

}
.

We claim that M̂ is that we desired. Yang: To be completed.

Definition A.6.9 (Formal Completion). Let A be a ring, I an ideal of A and M an A-module. The
formal completion of M with respect to I, denoted by M̂ , is defined as

M̂ := lim←−(· · · →M/InM →M/In−1M → · · · →M/IM),

where the maps are the natural projections M/InM →M/In−1M .

Example A.6.10. Let A = Z be the ring of integers and I = pZ. The formal completion of Z with
respect to pZ is the ring of p-adic integers, denoted by Zp. The elements of Zp can be represented
as infinite series of the form

a0 + a1p+ a2p
2 + · · · ,

where ai ∈ {0, 1, . . . , p− 1}.

Example A.6.11. Let R be a ring, A = R[X1, . . . , Xn] and I = (X1, . . . , Xn). The formal com-
pletion of A with respect to I is the ring of formal power series R[[X1, . . . , Xn]]. The elements of
R[[X1, . . . , Xn]] can be represented as infinite series of the form∑

i1,...,in

ai1,...,inX
i1
1 · · ·X in

n ,

where ai1,...,in ∈ R and the multi-index (i1, . . . , in) runs over all non-negative integers.
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Proposition A.6.12. The formal completion M̂ of a A-module M is complete, and image of M is
dense in M̂ . Moreover, M̂ is uniquely characterized by above properties.

Proof. Yang: To be completed.
By the universal property of the inverse limit, we get a covariant functor from the category of A-

modules to the category of topological Â-modules, which sends an A-module M to M̂ and a morphism
f :M → N to the induced morphism f̂ : M̂ → N̂ .

Lemma A.6.13. Let
0→M1 →M2 →M3 → 0

be an exact sequence of finite A-modules. Then the sequence of Â-modules

0→ M̂1 → M̂2 → M̂3 → 0

is still exact.

Proof. Yang: To be completed.

Proposition A.6.14. Let Â be completion of a noetherian ring A with respect to an ideal I and
M a finite A-module. Then the natural map M ⊗A Â→ M̂ is an isomorphism.

Proof. Since A is noetherian and M is finite, we have an exact sequence

Am → An →M → 0.

By Lemma A.6.13, we have an exact sequence

Âm → Ân → M̂ → 0.

On the other hand, we have

Am ⊗A Â→ An ⊗A Â→M ⊗A Â→ 0

by right exactness of the tensor product. Since the inverse limit commutes with finite direct sums,
we complete the proof by the Five Lemma.

Proposition A.6.15. Let A be a noetherian ring and I an ideal of A. Then the formal completion
Â of A with respect to I is a flat A-module.

Proof. This is a direct consequence of Lemma A.6.13 and Proposition A.6.14.

Lemma A.6.16. Let Â be the formal completion of a noetherian ring A with respect to an ideal I.
Suppose that I is generated by a1, ..., an. Then we have an isomorphism of topological rings

Â ∼= A[[X1, . . . , Xn]]/(X1 − a1, · · · , Xn − an).

Proof. Yang: To be completed.
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Proposition A.6.17. Let A be a noetherian ring and I an ideal of A. Then the formal completion
Â of A with respect to I is a noetherian ring.

Proof. Note that A[[X1, . . . , Xn]] is noetherian by Hilbert’s Basis Theorem. Then the conclusion
follows from Lemma A.6.16.

Proposition A.6.18. Let A be a noetherian ring and m a maximal ideal of A. Then the formal
completion Â of A with respect to m is a local ring with maximal ideal mÂ.

Proof. Yang: To be completed.

A.6.2 Complete local rings

Let (A,m, k) be a noetherian complete local ring with respect to the m-adic topology. We say that A is
of equal characteristic if charA = char k, and of mixed characteristic if charA 6= char k. In latter case,
char k = p and charA = 0 or charA = pk.

The goal of this subsection is the following structure theorem for noetherian complete local rings
due to Cohen.

Theorem A.6.19 (Cohen Structure Theorem). Let (A,m, k) be a noetherian complete local ring of
dimension d. Then

(a) A is a quotient of a noetherian regular complete local ring;

(b) if A is regular and of equal characteristic, then A ∼= k[[X1, . . . , Xd]];

(c) if A is regular, of mixed characteristic (0, p) and p 6∈ m2, then A ∼= D[[X1, . . . , Xd−1]], where
(D, p, k) is a complete DVR;

(d) if A is regular, of mixed characteristic (0, p) and p ∈ m2, then A ∼= D[[X1, . . . , Xd]]/(f), where
(D, p, k) is a complete DVR and f a regular parameter.

To prove the Cohen Structure Theorem, we first list some preliminary results on complete local
rings. They are independently important and can be used in other contexts.

Theorem A.6.20 (Hensel’s Lemma). Let (A,m, k) be a complete local ring, f ∈ A[X] a monic
polynomial and f ∈ k[X] its reduction modulo m. Suppose that f = g ·h for some monic polynomials
g, h ∈ k[X] such that gcd(g, h) = 1. Then the factorization lifts to a unique factorization f = g · h
in A[X] such that g and h are monic polynomials.

Proof. Lift g and h to monic polynomials g1, h1 ∈ A[X]. We inductively construct a sequence of
monic polynomials gn, hn ∈ A[X] such that ∆n = f−gnhn ∈ mn[X] and gn−gn+1, hn−hn+1 ∈ mn[X]

for all n ≥ 1. Suppose that gn and hn are constructed. Let gn+1 = gn + εn and hn+1 = hn + ηn for
εn, ηn ∈ mn[X]. Then we have

f − gn+1hn+1 = ∆n − (εnhn + ηngn) + εnηn.
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Hence we just need to choose εn and ηn such that

εnhn + ηngn ≡ ∆n mod mn+1, deg εn < deg gn, deg ηn < deghn.

Since gcd(g, h) = 1, there exist u, v ∈ k[X] such that ug + vh = 1 and degu < deg g, deg v < degh.
Lift u and v to u, v ∈ A[X] preserving the degrees. Then we have ugn + vhn ≡ 1 mod m. Let
εn = u∆n and ηn = v∆n. Then we get the desired equation.

Proposition A.6.21. Let (A,m, k) be a noetherian complete local ring and M an A-module that
is m-adically separated. Suppose dimk M/mM < ∞. Then the basis of M ⊗A k as k-vector space
can be lifted to a generating set of M as an A-module.

Proof. Let t1, . . . , tn ∈ M such that their images in M/mM form a basis of M/mM as a k-vector
space. Then M = t1A+ · · ·+ tnA+mM . For every x ∈M , we can write

x = a0,1t1 + · · ·+ a0,ntn +m1

for some a0,i ∈ A and m1 ∈ mM . Inductively, we have mkM = t1m
k+ · · ·+ tnmk+mk+1M . Suppose

that we have constructed mk ∈ mkM . Then we can write

mk = ak,1t1 + · · ·+ ak,ntn +mk+1.

Note that
∑

k≥0 ak,i converges in A, denote its limit by ai. Then we have

x− a1t1 + · · ·+ antn =
n∑
i=1

∑
r≥k

ar,iti +mk ∈ mkM

for all k. Since M is m-adically separated, x = a1t1 + · · ·+ antn. It follows that M =
∑
Ati.

The key to prove the Cohen Structure Theorem is the existence of coefficient rings.

Definition A.6.22 (Coefficient rings). Let (A,m, k) be a noetherian complete local ring.
When A is equal-characteristic, the coefficient ring (or coefficient field) is a homomorphism of rings
k→ A such that k→ A→ A/m is an isomorphism.
When A is mixed-characteristic, the coefficient ring is a complete local ring (R, pR, k) with a lo-
cal homomorphism of rings R ↪→ A such that the induced homomorphism R/pR → A/m is an
isomorphism.

Remark A.6.23. Recall that a homomorphism of local rings f : (A,mA) → (B,mB) is said to be
local if f−1(mB) = mA.

Theorem A.6.24. Every noetherian complete local ring (A,m, k) has a coefficient ring.

Assume the existence of coefficient rings, we can prove the Cohen Structure Theorem.

Proof of Cohen Structure Theorem. Let R be a coefficient ring of A and m = (f1, . . . , fd) a minimal
generating set of m. Then we have a homomorphism of complete local rings

Φ : R[[X1, . . . , Xd]]→ A, Xi 7→ fi.
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Let n be the maximal ideal of R[[X1, . . . , Xd]]. Then nA = m. By Proposition A.6.21, A is generated
by 1 as an R[[X1, . . . , Xd]]-module. This implies that Φ is surjective and (a) follows.

If A is regular of equal characteristic, then m is generated by a regular sequence. By consider
the dimension of R[[X1, . . . , Xd]] and A, we have that Φ is an isomorphism. This proves (b).

Note that if A is regular of mixed characteristic (0, p) and p 6∈ m2, then m is generated by
p, f1, . . . , fd−1. Then consider the homomorphism of complete local rings

R[[X1, . . . , Xd−1]]→ A, Xi 7→ fi.

By the same argument as above, we have that it is an isomorphism. This proves (c).
For (d), we have that kerΦ is of height 1 by the dimension argument. Since regular local rings

are UFDs, we can write kerΦ = (f) for some f ∈ R[[X1, . . . , Xd]]. Then we finish.

Existence of coefficient rings

Proof of Theorem A.6.24 in characteristic 0. Note that for any n ∈ Z, n 6∈ m. Hence Q ⊂ A. Let
Σ := {subfield in A} and K a maximal element in Σ with respect to the inclusion. The set Σ is non-
empty since Q ∈ Σ. By Zorn’s Lemma, K exists. Then K is a subfield of k by K ↪→ A↠ A/m ∼= k.
We claim that K is a coefficient field of A.

Suppose there is t ∈ k \K. If t is transcendent over K, lift t to an element t ∈ A. Then for any
polynomial f 6= 0 ∈ K[T ], we have f(t) 6= 0 ∈ k. Hence f(t) /∈ m. This implies that 1/f(t) ∈ A,
whence K(t) ⊂ A. This contradicts the maximality of K. If t is algebraic over K, let f ∈ K[T ] be
the minimal polynomial of t. Then f is irreducible in K[T ] and f(t) = 0. Regard f as a polynomial
in A[T ] by K ↪→ A. Note that charA = 0 implies that f is separable. By Hensel’s Lemma (Theorem
A.6.20), we can lift the root t to an element t ∈ A such that f(t) = 0. Then K(t) is a field extension
of K and K(t) ⊂ A. This contradicts the maximality of K again.

The same strategy does not work when char k = p > 0 since there might be inseparable extensions.
To fix this, we need to introduce the notion of p-basis.

Definition A.6.25. Let k be a field of characteristic p. A finite set {t1, . . . , tn} ⊂ k \ kp is called
p-independent if [k(t1, . . . , tn) : k] = pn. A set Θ ⊂ k \ kp is called a p-independent if its any finite
subset is p-independent. A p-basis for k is a maximal p-independent set Θ ⊂ k \ kp.

By definition, we have that k = kp[Θ] for any p-basis Θ of k. For any a ∈ k and θ ∈ Θ, we can write
a as a polynomial in Θ with coefficients in kp. The degree of θ in such polynomial representation is at
most p− 1. Such polynomial representation is unique by definition of p-independence.

Applying the Frobenius map n times, we have that kpn = kpn+1
[Θpn ]. This follows that k = kpn [Θ]

for all n. Moreover, for any a ∈ k and θ ∈ Θ, we can write a as a polynomial in Θ with coefficients in
kpn and the degree of θ is at most pn − 1. Such polynomial representation is unique.

Let k be a perfect field of characteristic p. If there is a ∈ k \ kp, then k(a1/p)/k is an inseparable
extension. This contradicts the perfectness of k. Hence k = kp and k has no nonempty p-basis.

Example A.6.26. Let k = Fp(t1, . . . , tn). Then kp = Fp(tp1, . . . , tpn). The set {t1, . . . , tn} is a p-basis
for k.
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Proof of Theorem A.6.24 in characteristic p. Choose Θ ⊂ A such that its image in A/m is a p-basis
for k. Let An := Ap

n
= {apn : a ∈ A} and K :=

⋂
n≥0(An[Θ]). Then we claim that K is a coefficient

field of A.
First we show that An[Θ]∩m ⊂ mpn . For every a ∈ An[Θ], if the degree of θ in the polynomial

representation of a is more than pn−1, we can write θk = θap
n ·θb for some b < pn. Regard θapn ∈ Apn

as coefficients. Now assume that a ∈ An[Θ] ∩m. Then consider the image of a in A/m. The image
of a equals 0 implies every coefficient of a is in m. Such coefficients are of form bp

n for some b ∈ A,
whence b ∈ m. Hence a ∈ mpn . This implies that K ∩ m =

⋂
n≥0(An[Θ] ∩ m) ⊂

⋂
n≥0 m

pn = {0}.
Then K is a field and hence a subfield of k.

For any a ∈ k, note that k = kp[Θ] = kp2 [Θ] = · · · = kpn [Θ] = · · ·. For every n, write

a =
∑
µn

cp
n

µnµn =: Pa,n(cµn),

where µn runs over all monomials in Θ with degree at most pn − 1 and cµn ∈ k. We call this
representation the pn-development of a with respect to Θ. Plug the pm-development of cµn into Pa,n,
we get the pn+m-development of a. In formula, that is,

Pa,n(Pa,m(cµn+m)) = Pa,n+m(cµn+m).

Lift cµn to cµn ∈ A for all µn. Let an := Pa,n(cµn) =
∑

µn
cp

n

µnµn ∈ An[Θ]. For m ≥ n, we have
an − am ∈ An[Θ] ∩ m ⊂ mpn . Hence an converges to an element a ∈ A. Now we show that a ∈ K.
For every µk, let bµk,n ∈ A be the element getting by plugging cµn+k

into the Pcµk
,n. Then bµk,n

converges to an element bµk ∈ A. By construction, we have

a = lim
n→∞

Pa,n+k(cµn+k
) = lim

n→∞
Pa,k(bµk,n) = Pa(bµk) =

∑
µk

bp
k

µk
µk ∈ Ak[Θ], ∀k.

It follows that a ∈ K.

Lemma A.6.27. Let (A,m, k) be a noetherian complete local ring of mixed characteristic. Suppose
that mn = 0 for some n ≥ 1. Then there exists a complete local ring (R, pR, k) with R ⊂ A.

Proof. Fix a p-basis of k and lift it to Θ ⊂ R. Let q = pn−1 and

M :=
{
θk11 · · · θ

kd
d | θi ∈ Θ, ki ≤ q − 1

}
, S :=

 ∑
µ∈M, finite

aµµ

∣∣∣∣aµ ∈ Rq

 .

For any a, b ∈ A, we claim that a ≡ b mod m if and only if aq ≡ bq mod mn. If a ≡ b mod m,
write a = b + m for some m ∈ m. Then ap = bp + pbq−1m + · · · + mq. Hence ap ≡ bp mod m2.
Inductively, we have aq ≡ bq mod mn. Conversely, if aq ≡ bq mod mn, then aq − bq ∈ mn ⊂ m.
Note that the Frobenius map x 7→ xq is injective on A/m. It follows that a ≡ b mod m. By the
claim, S maps to kq[Θ] = k bijectively.

Let
R := S + pS + p2S + · · ·+ pn−1S.

We claim that R is a subring of A. If so, R/pR ∼= k and we get a complete local ring (R, pR, k).
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Take a, b ∈ A. We have

aq + bq = (a+ b)q + pc ∈ Aq + pA.

Inductively, we have
aq + bq ∈ Aq + pAq + · · ·+ pn−1Aq.

This implies that R is closed under addition. Note that θa = θaq · θb with b < q. Then for any
µ, ν ∈M, we have µν ∈ S. Hence R is closed under multiplication.

Lemma A.6.28. Let k be a field of characteristic p. Then there exists a DVR (D, p, k) of mixed
characteristic (0, p).

Proof. Fix a well order ≤ on k and for any a ∈ k, set ka be the subfield of k generated by all elements
b ∈ k such that b ≤ a. Then k =

⋃
a∈k ka. We construct DVRs Da with residue field ka such that

Da ⊂ Db for a ≤ b. Begin from k0 = Fp and let D0 = Z(p). Suppose that Da is constructed for all
a < b. If kb/ka is transcendental, then let Db be the localization of Da[b] at the prime ideal generated
by p.

If kb/ka is algebraic, then let f ∈ ka[T ] be the monic minimal polynomial of b. Let Ka = Frac(Da)

and Kb = Ka[T ]/(f), where f is a monic lift of f to Da[T ]. Note that f is irreducible since f is
irreducible. Let Db be the integral closure of Da in Kb. In general, Db is a Dedekind domain.
Consider the prime factorization pDb = pe11 · · · p

ek
k in Db. For every i, Db/pi is a field extension of ka

and f has a root in Db/pi. Suppose deg f = deg f = d. It follows that [(Db/pi) : ka] = d. Note that
we have

∑k
i=1 eifi = [Kb : Ka] = d. Hence k = 1 and e1 = 1. It follows that pDb is prime and Db is

a DVR with residue field kb.
Let D =

⋃
a∈k Da. Then (D, pD, k) is the desired DVR.

Example A.6.29. Let k = Fp(t). Then D = Z[t](p) is a DVR satisfying the condition in Lemma
A.6.28.

Let k = Fp. For any n ≥ 1, let Kn = Kn−1(ζpn−1) and K0 = Q. Let Dn := OKn,pn be the
localization of the ring of integers of Kn at the prime pn lying above pn−1. Then D :=

⋃
nDn is a

DVR with residue field k.

Lemma A.6.30. Given k a field of characteristic p, there exists a unique complete local ring
(R, pR, k) of mixed characteristic (pn, p).

Proof. The existence follows from Lemma A.6.28. To show the uniqueness, suppose that (R′, pR′, k)
is another complete local ring of mixed characteristic (pn, p). Fix a p-basis of k and lift it to Θ ⊂ R

and Θ′ ⊂ R′ relatively. Let q = pn−1 and

M :=
{
θk11 · · · θ

kd
d | θi ∈ Θ, ki ≤ q − 1

}
, S :=

 ∑
µ∈M, finite

aµµ

∣∣∣∣aµ ∈ Rq

 .

Define M′, S ′ similarly with Θ′ and R′. Since S → R → k and S ′ → R′ → k are bijections, we can
define a bijective map Φ : S → S ′.

Note that any element in S can be written as s+pr with s ∈ S and r ∈ R uniquely since S → k
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is bijective. Inductively, we can write any element in R as

r = s+ ps1 + p2s2 + · · ·+ pn−1sn−1,

where si ∈ S. The similarly for R′. Extend Φ to R and we get a bijection between R and R′. Note
that by construction, Φ preserves addition and multiplication. Hence we get a ring isomorphism
Φ : R→ R′.
Proof of Theorem A.6.24 in mixed characteristic. Since A is complete, we have A = lim←−nA/m

n. By
Lemma A.6.27, there is a complete local ring (Rn, pRn, k) with Rn ⊂ A/mn. By Lemma A.6.30,
such Rn is unique up to isomorphism. It follows that Rn

∼= Rm/p
kn for m ≥ n. We get an inverse

system
· · · → Rn → Rn−1 → · · · → R1

∼= k.

Let R := lim←−nRn. Then (R, pR, k) is a complete local ring. The homomorphisms Rn ↪→ A/mn

induce a homomorphism of complete local rings R ↪→ A. This concludes the proof.
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Appendix B

Homological Algebra

B.1 Complexes and Homology

Definition B.1.1. Let A• and B• be two complexes in A and ϕ•, ψ• : A• → B• be two morphisms
of complexes. A homotopy between ϕ• and ψ• is a collection of morphisms hn : An → Bn−1 such
that

ϕn − ψn = dBn+1 ◦ hn + hn−1 ◦ dAn .

In diagram, we have

· · · // An+1
// An

dAn //

hn

||yy
yy
yy
yy

φn

��
ψn

��

An−1

hn−1||yy
yy
yy
yy

// · · ·

· · · // Bn+1

dBn+1 // Bn
// Bn−1

// · · ·

.

B.2 Derived Functors

In this section, fix an abelian category A.

B.2.1 Resolution
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Definition B.2.1 (Resolution). Let A ∈ A. A projective resolution (resp. flat resolution, free
resolution) of A is an exact sequence

· · · → Pn → Pn−1 → · · · → P1 → P0 → A→ 0,

where each Pi is a projective (resp. flat, free) object in A.
An injective resolution of A is an exact sequence

0→ A→ I0 → I1 → I2 → · · · → In → · · · ,

where each I i is an injective object in A.

Proposition B.2.2. Let P• : · · · → P1 → P0 → A → 0 and Q• : · · · → Q1 → Q0 → B → 0 be
complexes in A such that Pi is projective and Q• is exact. Given a morphism f : A→ B, there exists
a morphism of complexes f• : P• → Q• such that f0 = f . In particular, any two such morphism of
complexes are homotopic.
Dually, let I• : 0 → A → I0 → I1 → · · · and J• : 0 → B → J0 → J1 → · · · be complexes in A
such that J i is injective and I• is exact. Given a morphism f : A→ B, there exists a morphism of
complexes f • : I• → J• such that f 0 = f . In particular, any two such morphism of complexes are
homotopic.

Proof. Yang: To be completed.

Definition B.2.3. For an object A ∈ A, the projective dimension of A, denoted proj. dimA, is the
smallest integer n such that there exists a projective resolution

0→ Pn → Pn−1 → · · · → P1 → P0 → A→ 0

of A of length n. If no such n exists, we set proj. dimA =∞.
Dually, the injective dimension of A, denoted inj. dimA, is the smallest integer n such that there
exists an injective resolution

0→ A→ I0 → I1 → · · · → In−1 → In → 0

of A of length n. If no such n exists, we set inj. dimA =∞.



APPENDIX B. HOMOLOGICAL ALGEBRA 37

B.3 Applications to Commutative Algebra

B.3.1 Homological dimension

Lemma B.3.1. Let A be a ring and M an A-module. Then

sup
M

proj. dimM = sup
N

inj. dimN.

Proof. Note that
proj. dimM ≤ n

if and only if
ExtAn+1(M,N) = 0, ∀N.

And this is equivalent to
inj. dimN ≤ n.

Remark B.3.2. In fact, for fix N , we have

inj. dimN ≤ n

if and only if
ExtAn+1(A/I,N) = 0, ∀I

By Lemma Yang: ?. Hence we have

sup
M finite

proj. dimM = sup
M

proj. dimM = sup
N

inj. dimN.

Definition B.3.3. Let A be a ring. The homological dimension of A, denoted hl. dimA, is defined
as

hl. dimA := sup
M

proj. dimM = sup
M

inj. dimM.

Lemma B.3.4. Let A be a noetherian ring, B a flat A-algebra and M a finite A-module. Then we
have

ExtiA(M,N)⊗ B ∼= ExtiB(M ⊗ B,N ⊗M), ∀N.

Proof. Yang: To be completed.

Proposition B.3.5. Let A be a noetherian ring. Then

hl. dimA = sup
p∈SpecA

hl. dimAp.

Proof. Compute homological dimension of A using ExtiA(M,N) for finite M . The conclusion follows
from Propostion B.3.4.
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Definition B.3.6. Let (A,m, k) be a noetherian local ring. We say that a homomorphism of A-
modules f :M → N is minimal if the induced map M⊗k→ N⊗k is an isomorphism. Equivalently,
f is minimal if and only if f is surjective and Ker f ⊂ mM .

Definition B.3.7. Let A be a noetherian local ring and M a finite A-module. A minimal projective
resolution of M is a projective resolution

· · · → Pn
dn−→ Pn−1

dn−1−−−→ · · · → P1
d1−→ P0

d0−→M → 0

such that each homomorphism Pi → Ker di−1 is minimal.

Proposition B.3.8. Let (A,m, k) be a noetherian local ring and M a finite A-module. Then M

has a minimal projective resolution. Moreover, any two minimal projective resolutions of M are
isomorphic.

Proof. Suppose M⊗Ak =
⊕

k·xi. Lift xi to elements of M . Then we have a minimal homomorphism
d0 :

⊕
A · xi → M . Similarly choose minimal homomorphisms dk : Ani → Ker di−1 for i = 1, 2, · · ·.

This gives a minimal projective resolution.
Suppose we have two minimal homomorphism f, g : An → M . After tensoring with k, we

have isomorphisms between f ⊗ k and g ⊗ k. Lifting to A, we get an homomorphism ϕ : f → g.
Here homomorphism between f, g means a homomorphism An → An such that f = g ◦ ϕ. The
homomorphism ϕ is represented by a matrix T . We have detT 6∈ m, whence ϕ is an isomorphism.

Proposition B.3.9. Let L• → M be a minimal projective resolution and P• be an arbitrary pro-
jective resolution of M . Then we have P• ∼= L• ⊕ P ′

• for some exact complexes P ′
•.

Proof. By Propostion B.2.2, we have homomorphism

L•
φ•−→ P•

ψ•−→ L•.

between complexes. By Propostion B.2.2 again, T• := ψ• ◦ ϕ• is homotopic to the identity by h•.
Suppose T• is represented by a matrix. Since L• is minimal, we have

(T − id)(Ln) = (dn+1 ◦ hn + hn−1 ◦ dn)(Ln) ⊂ mLn.

Then detT 6∈ m and hence T• is an isomorphism. It follows that ψ• is surjective, whence it splits P•

into a direct sum L⊕ P ′
• since L• is projective. By the Five Lemma, we see that P ′

• is exact.

Lemma B.3.10. Let (A,m, k) be a noetherian local ring and M a finite A-module. Then
proj. dimM ≤ n if and only if TorAn+1(M, k) = 0.

Proof. The necessity is clear. For the sufficiency, we have a minimal projective resolution

· · · → Pn+1
dn+1−−−→ Pn

dn−→ Pn−1
dn−1−−−→ · · · → P1

d1−→ P0
d0−→M → 0.
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Let C := Im dn. Then we have

0→ Pn+1
dn+1−−−→ Pn

dn−→ C → 0.

Hence TorA1 (C, k) ∼= TorAn+1(M, k) = 0. Let K = Ker dn. Then we have the short exact sequence

0→ K → Pn → C → 0.

Since TorA1 (C, k) = 0, there is an exact sequence

0→ K ⊗A k→ Pn ⊗A k→ C ⊗A k→ 0.

Since Pn → C is minimal, we have K ⊗A k = 0. By the Nakayama’s lemma, K = 0. This implies
that proj. dimC ≤ 0 and hence proj. dimM ≤ n.

Proposition B.3.11. Let (A,m, k) be a noetherian local ring. Then hl. dimA = proj. dim k (finite
or infinite).

Proof. The inequality hl. dimA ≥ proj. dim k is by definition. Conversely, we can compute
TorAn+1(M, k) using minimal projective resolution of k for any finite A-module M . By Lemma
B.3.10, we have proj. dimM ≤ n if and only if TorAn+1(M, k) = 0. This implies that proj. dimM ≤ n

for all finite A-modules M if proj. dim k = n. By Remark B.3.2, we have hl. dimA ≤ n.

Proposition B.3.12. Let (A,m) be a noetherian local ring and M a finite A-module. Let a ∈ m

be an M -regular element. Then proj. dimM/aM = proj. dimM + 1. Here we set ∞+ 1 =∞.

Proof. We have an exact sequence

0→M
∗a−→M →M/aM → 0.

Take the long exact sequence with respect to Tor(−, k), we get

· · · → TorAi+1(M, k)→ TorAi+1(M/aM, k)→ TorAi (M, k) ∗a−→ TorAi (M, k)→ · · ·

Since the derived homomorphism of ∗a is zero, we have TorAi+1(M/aM, k) = 0 if and only if
TorAi (M, k) = 0. By Lemma B.3.10, we have proj. dimM/aM = proj. dimM + 1.

B.3.2 Depth and regularity by homological algebra

Proposition B.3.13. Let (A,m, k) be a noetherian local ring and M a finite A-module. Then

depthM := inf{i : ExtiA(k,M) 6= 0}.

Proof. Let a ∈ m be M -regular and N =M/aM . Then we claim that

inf{i : ExtiA(k, N) 6= 0} = inf{i : ExtiA(k,M) 6= 0} − 1.

Indeed, we have an exact sequence

0→M
a−→M → N → 0.
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It induces a long exact sequence

· · · → Exti−1
A (k,M)→ Exti−1

A (k, N)→ ExtiA(k,M)
ExtiA(k,Multa)−−−−−−−−→ ExtiA(k,M)→ · · · .

Note that a ∈ m, then ExtiA(k,Multa) = 0. It follows that when Exti−1
A (k,M) = 0, we have

Exti−1
A (k, N) = 0 iff ExtiA(k,M) = 0, whence the claim.
Let n = inf{i : ExtiA(k,M) 6= 0}. Induct on n. Suppose first n = 0. Since k is a simple

A-module, there is an injective homomorphism k→M . Then m ∈ AssM and hence depthM = 0.
Suppose n > 0., let a1, · · · , am ∈ m be any M -regular sequence. Using the claim inductively on

M/(a1, · · · , am)M , we have n ≥ depth. If M has no regular element, then m ⊂
⋃

p∈AssM p. Then
m = p for some p ∈ AssM . This show that we can find x 6= 0 ∈ M such that p = Annx. It gives
a homomorphism k = A/m→ M . That is a contradiction and hence M has a regular element. Let
a be M -regular and N = M/aM . Then depthN = n − 1 by the claim and induction hypothesis.
Hence we have depthM ≥ n.

Lemma B.3.14. Let (A,m, k) be a noetherian local ring. Suppose we have exact sequences

0→ Anr dr−→ Anr−1
dr−1−−→ · · · → An1

d1−→ An0 ,

such that Ani → Ker di−1 is minimal for all i. Then depthA ≥ r.

Proof. Since dr is injective and its image is contained in mAnr−1 , we can choose t ∈ m that is not a
zero divisor. Denote the sequence by C•. Then we have a short exact sequence of complexes

0→ C•
∗t−→ C• → C•/tC• → 0.

Consider the long exact sequence in homology

· · · → Hi(C•)
∗t−→ Hi(C•)→ Hi(C•/tC•)→ Hi−1(C•)

∗t−→ Hi−1(C•)→ · · · .

Since C• is exact, we have Hi(C•) = 0 for all i. In particular, Hi(C•/tC•) = 0 for all i ≥ 2.
Inductively, we can choose a regular sequence of length r in m.

Lemma B.3.15. Let (A,m, k) be a noetherian local ring and M a finite A-module. Suppose there
is an injective homomorphism k→M . Then proj. dimM ≥ dimk TA,m.

Proof. Let x1, · · · , xn ⊂ m \ m2 such that their images in m/m2 form a basis. Then we have a
complex

K• := 0→ ∧nA⊕n dn−→ ∧n−1A⊕n dn−1−−−→ · · · → ∧1A⊕n d1−→ ∧0A⊕n d0−→ k→ 0,

where

dr : ∧rA⊕n → ∧r−1A⊕n, ei1 ∧ · · · ∧ eir 7→
r∑

k=1

(−1)kxikei1 ∧ · · · ∧ êik ∧ · · · ∧ eir .

Here êik means that we omit the k-th element. Let P• →M be the minimal projective resolution of
M . Then we have a homomorphism of complexes

ϕ• : K• → P•
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induced by the injective homomorphism k→M .
We claim that ϕi is injective and splits Pi into a direct sum Ki ⊕ Fi with Fi free for all i ≥ 0.

Since Ki and Pi are free, we just need to show that ϕi ⊗A idk is injective. Induct on i. For i = 0,
note that k→M ⊗A k is injective, by the commutative diagram

A //

φ0⊗Aidk
��

k

��
P0 ⊗A k ∼= //M ⊗A k

,

the image of ϕ0 ⊗A idk is not zero in P0 ⊗A k.
For i > 0, since Ki−1 and Pi−1 are free, we have a natural isomorphism between

mKi−1 ⊗A k→ mPi−1 ⊗A k

and
Ki−1 ⊗A m/m2 → Pi−1 ⊗A m/m2.

We have a commutative diagram

Ki ⊗A k //

��

mKi−1 ⊗A k

��
Pi ⊗A k // mPi−1 ⊗A k

. (B.1)

Since Pi−1/Ki−1
∼= Fi−1 is free, the right vertical map in (B.1) is injective. By construction of K•,

Ki⊗A k→ mKi−1⊗A k is injective. Hence the left vertical map in (B.1) is injective. This completes
the proof of the claim.

By the claim, Pi 6= 0 for all i ≤ n and the conclusion follows.

Proposition B.3.16 (Auslander-Buchsbaum formula). Let A be a noetherian local ring and M a
finite A-module. Suppose proj. dimM <∞. Then proj. dimM = depthA− depthM .

Proof. We have a minimal projective resolution

0→ Anr → Anr−1 → · · · → An1 → An0 →M → 0.

By Lemma B.3.14, we have depthA ≥ proj. dimM .
Induct on depthM . Suppose depthM = 0. Then by Proposition B.3.13, we have HomA(k,M) 6=

0, whence there is an injective homomorphism k→M . By Lemma B.3.15, we have

depthA ≥ proj. dimM ≥ dimk TA,m ≥ depthA.

If depthM > 0, choose a regular element a ∈ m that is M -regular. Then by Propostion B.3.12, we
have

depthM + proj. dimM = depth(M/aM)− 1 + proj. dim(M/aM) + 1 = depthA.
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Theorem B.3.17. Let (A,m) be a noetherian local ring. Then A is regular at m if and only if
hl. dimA <∞.

Proof. Suppose A is regular at m. Let x1, · · · , xn be a minimal generating set of m. Then x1, · · · , xn
is an A-regular sequence since A is regular at m. By Proposition B.3.12, we have proj. dim k =

proj. dimA/(x1, · · · , xn)A = n+ proj. dimA = n.
Conversely, suppose hl. dimA <∞. Then by Proposition B.3.11, we have proj. dim k <∞. We

have
dimk TA,m ≤ proj. dim k ≤ depthA ≤ dimk TA,m.

The first “≤” follows from Lemma B.3.15. The second “≤” follows from Proposition B.3.16. Hence
we see that A is regular at m.

Corollary B.3.18. Let (A,m) be a noetherian local ring. Then A is regular if and only if it is
regular at m.

Proof. The sufficiency is trivial. For the necessity, note that if A is regular, then hl. dimA <∞ by
Theorem B.3.17. For any p ∈ SpecA, we have a finite projective resolution

0→ Pn → Pn−1 → · · · → P1 → P0 → A/p→ 0.

Tensoring with Ap, we have a finite projective resolution of κ(p). By Theorem B.3.17 again, we see
that Ap is regular at p.

Lemma B.3.19. Let A be a noetherian integral domain. Then A is a UFD if and only if every
height 1 prime ideal of A is principal.

Proof. Yang: To be completed.

Lemma B.3.20. Let A be a noetherian integral domain and (x) ⊂ A a non-zero prime ideal. Then
A is a UFD if and only if A[1/x] is a UFD.

Proof. Yang: To be completed.

Theorem B.3.21. Let A,m be a regular noetherian local ring. Then A is UFD.

Proof. Yang: To be completed.
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