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CHAPTER 1. THE FIRST PROPERTIES

Chapter 1

The First Properties

1.1 Setup and the first examples

1.1.1 Notations

All schemes are assumed to be separated. For a “scheme” which is not separated, we will use the term
“prescheme”.

Let A be a ring. We denote by Spec A the spectrum of A. For an ideal I C A, we use V() to
denote the closed subscheme of Spec A defined by I.

Let S be Speck, Spec Ok or an algebraic variety. An S-variety is an integral scheme X which is of
finite type and flat over S. For an algebraic variety, we mean a k-variety.

We will use k, K to denote fields, and k, K to denote their algebraically closure relatively.

Let X be an integral scheme. We denote by £ (X) the function field of X. For a closed point
x € X, we denote by k(z) the residue field of x.

We denote the category of S-varieties by Varg. We denote by X (T') the set of T-points of X, that
is, the set of morphisms 7" — X.

Let X be an algebraic variety over k. A geometrical point is referred a morphism Speck — X.

When refer a point (may not be closed) in a scheme, we will use the notation £ € X. We use Z¢ to
denote the Zariski closure of {£} in X. When we talk about a closed point on an algebraic variety, we

will use the notation x € X (k).

Separated and proper morphisms

1.1.2 Examples
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Appendix A

Commutative Algebra

A.1 Elementary Results

Yang: To be completed

A.1.1 Rings and modules

In the appendix and all the note, the “ring” is always commutative and with identity. We denote by
Spec A the set of prime ideals of a ring A. We denote by mSpec A the set of maximal ideals of A. Let
I C A be an ideal of A. We define

V(I)={p € SpecA: I C p}.
Let a, b be ideals of A. We define
(a:b):={aec A:ab Ca}.

This is an ideal of A.
Let rad(A) be the Jacobian radical of A, i.e., the intersection of all maximal ideals of A. Let nil(A)

be the nilradical of A, i.e., the ideal of A consisting of all nilpotent elements.

Proposition A.1.1. Let A be a ring. Then we have

nil(A) = (] ».

pESpec A
Proof. Yang: To be completed. ]
I f. g p

Proposition A.1.2. Let A be a ring, p, p; prime ideals of A and a, a; ideals of A.

(a) Suppose a C |J;—, p;- Then there exists ¢ such that a C p;.

(b) Suppose (;_; a; C p. Then there exists ¢ such that a; C p.

| Proof. Yang: To be completed. [




A.1. ELEMENTARY RESULTS

Let M be an A-module. We say that M is finite if there exists an exact sequence
A" - M — 0.
We say that M is finite presented if there exists an exact sequence
A" — A" - M — 0.

If A is a noetherian ring, then every finite A-module is finite presented.

Definition A.1.3. Let A be a ring and M an A-module. The support of M is defined as
Supp M = {p € Spec A: M, # 0}.
The annihilator of M is defined as
Anmm M = {a € A: aM = 0}.

This is an ideal of A.

Proposition A.1.4. Let A be a ring and M a finite A-module. Then Supp M = V(Ann M). In
particular, Supp M is a closed subset of Spec A.

Proof. Yang: To be completed. O]
I g p

A.1.2 Localization

Definition A.1.5. Let A be a ring and S C A a multiplicative subset, i.e., 1 € S and s;,s0 € S
implies s159 € S. The localization of A at S is defined as

S'A=AxS/ ~,

where (a, s) ~ (b,t) if there exists u € S such that u(at — bs) = 0. Yang: To be completed.

Proposition A.1.6.

A.1.3 Chain conditions
A.1.4 Nakayama’s Lemma

Theorem A.1.7 (Nakayama’s Lemma). Let A be a ring and 9 be its Jacobi radical. Suppose M
is a finitely generated A-module. If aM = M for a C 91, then M = 0.

Proof. Suppose M is generated by 1, -+ ,z,. Since M = aM, formally we have (zy,--- ,1,)T =

O(xy,- - ,x,)T for ® € M, (a). Then (& —id)(xy, -+ ,2,)T = 0. Note that det(® —id) = 1+ a for
a €aC M. Then & — id is invertible and then M = 0. ]

Remark A.1.8. The finiteness of M is crucial in Nakayama’s Lemma. For example, let Z be the

ring of algebraic integers in Q. Choose a non-zero prime ideal p of Z. Then we have that pr = pQZJ.




APPENDIX A. COMMUTATIVE ALGEBRA

Indeed, if a € pr, let b =+/a € Zp. Then b? = a € pr and whence b € pr since p is prime. It
follows that a = b? € p*Z,.

Proposition A.1.9 (Geometric form of Nakayama’s Lemma). Let X = Spec A be an affine scheme,

xr € X a closed point and F a coherent sheaf on X. If ay,--- ,ar € F(X) generate F|, = F ® k(z),

then there is an open subset U C X such that a;|y generate F(U).
| Proof. Yang: To be completed. O

Corollary A.1.10. Let X be a scheme and F a coherent sheaf on X. Then the function z

dimy,) F|, is upper semicontinuous.

| Proof. Yang: To be completed. O

A.1.5 Nullstellensatz

Theorem A.1.11 (Noether’s Normalization Lemma). Let A be a k-algebra of finite type. Then
there is an injection k[T, - -+, Ty] < A such that A is finite over k[T7,- -, Ty).

| Remark A.1.12. Here A does not need to be integral. For example,

| Theorem A.1.13 (Hilbert’s Nullstellensatz). Let A be a

A.2 Associated prime ideals

A.2.1 Associated prime ideals

Definition A.2.1 (Associated prime ideals). Let A be a noetherian ring and M an A-module. The
associated prime ideals of M are the prime ideals p of form Ann(x) for some x € M. The set of

associated prime ideals of M is denoted by Ass(M).

Example A.2.2. Let A = k[z,y]/(zy) and M = A. First we see that (z) = Anny, (y) = Annx €
Ass M. Then we check other prime ideals. For (z,y), if zf = yf = 0, then f € () N (y) = (0). If
(x —a) = Ann f for some f, note that y € (z —a) for a € k*, then f € (z). Hence f = 0. Therefore
Ass M = {(2), ()}

Example A.2.3. Let A = k[x,y]/(2? xy) and M = A. The underlying space of Spec A is the y-axis
since /(2% zy) = (). First note that () = Anny, (z,y) = Annx € Ass M. For (x,y — a) with
a € k*, easily see that xf = (y —a)f = 0 implies f = 0 since A = k- = & k[y| as k-vector space.
Hence Ass M = {(z), (z,v)}.

Lemma A.2.4. Let A be a noetherian ring and M an A-module. Then the maximal element of the

set
{Annz: z € M,,z # 0}
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belongs to Ass M.

Proof. We just need to show that such Annx is prime. Otherwise, there exist a,b € A such that
ab € Annz but a,b ¢ Annz. It follows that Annz C Annaz since b € Annaz \ Annz. This

=

contradicts the maximality of Ann . ]

An element a € A is called a zero divisor for M if M — aM, m — am is not injective.

Corollary A.2.5. Let A be a noetherian ring and M an A-module. Then

{zero divisors for M} = U p.
peAss M

Lemma A.2.6. Let A be a noetherian ring and M an A-module. Then p € Assy M iff pA, €
Assy, M,.

Proof. Suppose pA, € Assy, M,. Let pA, = Annyy/c with yo € M and c € A\ p. For a € Annyj,
ayo = 0. Then a/1 € pA,. It follows that a € p. Hence Anny, C p.

Inductively, if Anny, C p, then there exists b, € A\ p such that y, 11 := bpyn, Anny,,1 C p
and Anny, C Anny,.,. To see this, choose a,, € p\ Anny,. Then (a,/1)y, = 0 since a,/1 € pA,.
By definition, there exist b, € A\ p such that a,b,y, = 0. This process must terminate since A is
noetherian. Thus Anny, = p for some n. Hence p € Assy M.

Conversely, suppose p = Annxz € Ass M. If (a/s)(x/1) = 0 € M, there exist t € A\ p such
that tax = 0. It follows that ta € p and then (a/s) € pA,. Hence pA, € Assy, M,. O

Proposition A.2.7. We have Ass M C Supp M. Moreover, if p € Supp M satisfies V(p) is an
irreducible component of Supp M, then p € Ass M.

Proof. For any p = Annz € Ass M, we have A/p = A -2 C M. Tensoring with A, gives A,/pA, —
M, since A, is flat. Hence M, # 0 and p € Supp M.

Now suppose p € Supp M and V (p) is an irreducible component of Supp M. First we show that
p € Assy, My,. Let x € M, such that Annz is maximal in the set

{Annz: z € M,,x # 0}.

Then we claim that Annz = pA,. First, Annz is prime by Lemma A.2.4. If Annx # p, then
V(Annz) D V(p). This implies that Annz ¢ Supp M, since Supp M, = Supp M N Spec A,. This is
a contradiction. Thus pA, € Assy, M,. By Lemma A.2.6, we have p € Ass M. ]

| Remark A.2.8. The existence of irreducible component is guaranteed by Zorn’s Lemma.

Definition A.2.9. A prime ideal p € Ass M is called embedded if V' (p) is not an irreducible com-
ponent of Supp M.

| Example A.2.10. For M = A = k[z,y]/(2?, zy), the origin (z,y) is an embedded point.
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Proposition A.2.11. If we have exact sequence 0 — M; — My — Mj3, then Ass My C Ass M, U
Ass Ms.

Proof. Let p = Annxz € Ass My \ Ass M;. Then the image [z] of x in Mj is not equal to 0. We
have that Annz C Ann[z|. If @ € Ann[z] \ Annz, then ax € M;. Since Annz C Annax, there

is b € Annaz \ Annz. However, it implies ba € Annz, and then a € Annx since Annx is prime,

which is a contradiction. O]

Corollary A.2.12. If M is finitely generated, then the set Ass M is finite.

Proof. For p = Annx € Ass M, we know that the submodule M; generated by x is isomorphic to
A/p. Inductively, we can choose M,, be the preimage of a submodule of M /M,,_; which is isomorphic
to A/q for some q € Ass M /M,,_,. We can take an ascending sequence 0 = My C M; C --- C M,, C

- such that M;/M; 1 = A/p; for some prime p;. Since M is finitely generated, this is a finite

sequence. Then the conclusion follows by Proposition A.2.11. [

A.2.2 Primary decomposition

Definition A.2.13. An A-module is called co-primary if Ass M has a single element. Let M be
an A-module and N C M a submodule. Then N is called primary if M /N is co-primary. If
Ass M/N = {p}, then N is called p-primary.

Remark A.2.14. This definition coincide with primary ideals in the case M = A. Recall an ideal
q C A is called primary if Vab € p, a ¢ q implies b"™ € q for some n.

Let q be a g-primary ideal. Since Supp A/q = {p}, p € Ass A/q. Suppose Annfa] € Ass A/q.
Then p C Ann|a] since V(p) = Supp A/q. If b € Ann[a], then ab € q and a ¢ q. Hence " € g, and
then b € p. This shows that Ass A/q = {p} and q is p-primary as an A-submodule.

Let ¢ C A be a p-primary A-submodule. First we have p = ,/q since V(p) is the unique
irreducible component of Supp A/q. Suppose ab € q and a ¢ q. Then b € Ann[a] C p since p is the
unique maximal element in {Ann|c|: ¢ € A\ q}. This implies that b" € q.

Definition A.2.15. Let A be a noetherian ring, M an A-module and N C M a submodule. A

minimal primary decomposition of N in M is a finite set of primary submodules {Q;}" ; such that

N=@,
=1

no ); can be omitted and Ass M /Q; are pairwise distinct. For Ass M/Q; = {p}, Q; is called
belonging to p.

Indeed, if N C M admits a minimal primary decomposition N = [ Q; with Q; belonging to p,
then Ass(M/N) = {p;}. For given i, consider N; := (1, Q;, then N;/N = (N; + @;)/Q;. Since
N; # N, Ass N;/N # (). On the other hand, Ass N;/N C Ass M /Q; = {p}. Tt follows that Ass N;/N =
{p;}, whence p; € Ass M/N. Conversely, we have an injection M /N — @ M/Q;, so Ass M /N C
JAss M /Q;. Due to this, if Q; belongs to p, we also say that @); is the p-component of N.
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Proposition A.2.16. Suppose N C M has a minimal primary decomposition. If p € Ass M /N
is not embedded, then the p component of N is unique. Explicitly, we have @ = v~'(N,), where
v:M— M,.

Proof. First we show that Q = v=1(Q,). Clearly Q C v~ *(Q,). Suppose x € v~ !(Q,). Then there
exists s € A\ p such that sz € (). That is, [sz] =0 € M/Q. If [x] # 0, we have s € Ann[z] C p.
This contradiction enforces Q@ = v=1(Q,).

Then we show that N, = Q). Just need to show that for p’ # p and the p’ component @' of NV,
Q, = M,. Since p is not embedded, p’ ¢ p. Then p ¢ V(p) = Supp M /Q". So M,/Q;, = 0. O

Example A.2.17. If p is embedded, then its components may not be unique. For example, let M =
A =X[z,y]/(2? zy). Then for every n € Z>y, (z) N (2%, zy,y") is a minimal primary decomposition
of (0) C M.

Let A be a noetherian ring and p C A a prime ideal. We consider the p component of p", which
is called n-th symbolic power of p, denoted by p™. We have p(® = p"A, N A. In general, p™ is not

equal to p"™; see below example.

Example A.2.18. Let A = k[z,y,2,w]/(y* — 2z2%,yz — zw) and p = (y,z,w). We have z =
y?/x?,w = yz/x € p*A,, whence p2A, = (z,w) # p*.

Theorem A.2.19. Let A be a noetherian ring and M an A-module. Then for every p € Ass M,
there is a p-primary submodule Q(p) such that

= (] Q.
pEAss M
Proof. Consider the set
N:={NCM:p¢AssN}.

Note that Ass|JN; = [JAss N; by definition of associated prime ideals. Then it is easy to check
that A satisfies the conditions of Zorn’s Lemma. Hence N has a maximal element Q(p). We claim
that Q(p) is p-primary. If there is p’ # p € Ass M /Q(p), then there is a submodule N' = A/p. Let
N" be the preimage of N’ in M. We have Q(p) € N” and N” € N. This is a contradiction. By the
fact Ass( NV; = () Ass IV;, we get the conclusion. O

Corollary A.2.20. Let A be a noetherian ring and M a finite A-module. Then every submodule

of M has a minimal primary decomposition.

A.3 Dimension and Depth
There are three numbers measuring the “size” of a local ring (A, m):
e dim A: the Krull dimension of A.

o depth A: the depth of A.
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o dimy(m) Tam: the dimension of Zariski tangent space T := (m/m?)¥ as a x(m)-vector space.
Somehow the Krull dimension is “homological” and the depth is “cohomological”.

Definition A.3.1. Let A be a noetherian ring. The height of a prime ideal p in A is defined as the

maximum length of chains of prime ideals contained in p, that is,

ht(p) := sup{n | 3 a chain of prime ideals po T p;1 S --- T p, =p}.

-

The Krull dimension of A is defined as

dim A = ht(p).
im e (p)

Example A.3.2. Let A be a PID. For every two non-zero prime ideals p; and po, if p; = 1A C po =
to A, then ty | t; and hence p; = po. It follows that dim A = 1. Consequently, the ring of integers Z

and the polynomial ring k[7T] in one variable over a field have Krull dimension 1.

Definition A.3.3. Let A be a noetherian ring, I C A an ideal and M a finitely generated A-
module. A sequence ti,--- ,t, € I is called an M -reqular sequence in I if t; is not a zero divisor on
M/(ty, -+ ,ti—1)M for all i.

| Example A.3.4. Let A = k[z,y|/(z% xy) and I = (z,y). Then depth; A = 0.

Definition A.3.5. Let A be a noetherian ring. For every p € Spec A, p/p? is a vector space over
r(p). The Zariski’s tangent space Tx,, of A at p is defined as (p/p?)Y, the dual k(p)-vector space of

p/p*.

A.3.1 Artinian Rings and Length of Modules

Definition A.3.6. Let A be a ring and M an A module. A simple module filtration of M is a
filtration
M=My2M 2---2M,=0

such that M;/M;_; is a simple module, i.e. it has no submodule except 0 and itself. If M has a
simple module filtration as above, we define the length of M as n and say that M has finite length.

The following proposition guarantees the length is well-defined.

Proposition A.3.7. Suppose M has a simple module filtration M = Moo 2 Mo 2 --- 2 M, = 0.
Then for any other filtration M = Myo D My1 D --- D My, = 0 with m > n, there exist k < m
such that My, = My 1.

Proof. We claim that there are at least 0 < k; < -+ < ky,,—, < m satisfies that Moy, = Mo ,+1-
Let M; ; := M, N My ;. Inductively on n, we can assume that there exist ki, -- -, k,—,,+1 such that

M, = M, j+1. Consider the sequence

Moyo/Mio D (Mo + Mio)/Mig D -+ D (Mo + Mig)/Mip=0
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in Moo/ M. Since My/ M, is simple, there is at most one k; with Moy, + My o # Mo g, 41 + M o.
And note that if My, + Mo = Mok, 41+ Mo and Moy, N Mo = Mg, N Mo, then Mo, = Mo g, +1
by the Five Lemma. O
Example A.3.8. Let A be a ring and m € mSpec A. Then A/m is a simple module. Yang: To be

completed.

Proposition A.3.9. Let A be a ring and M an A-module. Then M is of finite length iff it satisfies

both a.c.c and d.c.c.

Proof. Note that if M has either a strictly ascending chain or a strictly descending chain, M is
of infinite length. Conversely, d.c.c guarantee M has a simple submodule and a.c.c guarantee the

sequence terminates. ]

Proposition A.3.10. The length I(—) is an additive function for modules of finite length. That
is, if we have an exact sequence 0 — M; — My — M3 — 0 with M; of finite length, then (M) =
I(My) + 1(Ms).

| Proof. The simple module filtrations of M; and Mj3 will give a simple module filtration of M. [
Proposition A.3.11. Let (A, m) be a local ring. Then A is artinian iff m™ = 0 for some n > 0.

Proof. Suppose A is artinian. Then the sequence m D m? D m® O --- is stable. It follows that
m” = m""! for some n. By the Nakayama’s Lemma A.1.7, m" = 0.

Conversely, we have

mcNC N P,

minimal prime ideal

whence m is minimal. O

Proposition A.3.12. Let A be a ring. Then A is artinian iff A is of finite length.

Proof. First we show that A has only finite maximal ideal. Otherwise, consider the set {m; N'my N
-+-MNmg}. It has a minimal element m; N---Nm,, and for any maximal ideal m, m; N---Nm, C m.
It follows that m = m; for some ¢. Let 9t = m; N ---Nm, be the Jacobi radical of A. Consider the
sequence 9 O 92 O --- and by Nakayama’s Lemma, we have 9% = 0 for some k. Consider the
filtration
AomD---omfowmhmy o - omh - mk =(0).

We have mk - m{/m’f . -m{“
Hence A is of finite length. O

is an A/m;-vector space. It is artinian and then of finite length.

Theorem A.3.13. Let A be a ring. Then A is artinian iff A is noetherian and of dimension 0.

Proof. Suppose A is artinian. Then A is noetherian by Proposition A.3.12. Let p € Spec A. Then
A/p is an artinian integral domain. If there is @ € A/p is not invertible, consider (a) D (a?) D ---,
we see a = 0. Hence p is maximal and dim A = 0.

Suppose that A is noetherian and of dimension 0. Then every maximal ideal is minimal. In

particular, A has only finite maximal ideal py,--- ,p,. Let g; be the p;-component of (0). Then we
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have A — @, A/q;. We just need to show that A/q; is of finite length as A-module. If q;, C p;, take
radical we get p; C q; and hence i = j. So A/q; is a local ring with maximal ideal p;A/q;. Then
every element in p;A/q; is nilpotent. Since p; is finitely generated, (p;A/q;)* = 0 for some k. Then
A/q; is artinian and then of finite length as A/q;-module. Then the conclusion follows. O

A.3.2 Dedekind Domains

Yang: To be completed

A.3.3 Krull’s Principal Ideal Theorem

Theorem A.3.14 (Krull’s Principal Ideal Theorem). Let A be a noetherian ring. Suppose f € A

is not a unit. Let p be a minimal prime ideal among those containing f. Then ht(p) < 1.

Proof. By replacing A by A,, we may assume A is local with maximal ideal p. Note that A/(f) is
artinian since it has only one prime ideal p/(f).

Let q C p. Consider the sequence qV) © g > .- its image in A/(f) is stationary. Then there
exists n € Zsg such that ¢+ (f) = q" TV +(f). For x € ¢, we may write v = y+af fory € g+,
Then af € q™. Since q™ is g-primary and f ¢ q, a € q". Then we get q™ = g™+1) 4+ fq(),
That is, ¢ /g1 = fq™ /q"*1). Note that f € p, by Nakayama’s Lemma, q™ = q*!. That is,

q"A4, = q"*'A,. By Nakayama’s Lemma again, q"A4, = 0. It follows that qA4, is minimal, whence

A is artinian. Therefore, g is minimal in A. O

Corollary A.3.15. Let A be a noetherian local ring. Suppose f € A is not a unit. Then
dim A/(f) > dim A — 1. If f is not contained in a minimal prime ideal, the equality holds.

Proof. Let pg € -+ C p, be a sequence of prime ideals. By assumption, f € p,. If f € pg, we get
a sequence of prime ideals in A/(f) of length n. Now we suppose f ¢ pog. Then there exists & > 0
such that f € priq1 \ i

Choose q be a minimal prime ideal among those containing (px_1, f) and contained in pgyq.
Then by Krull’s Principal Ideal Theorem A.3.14, qi C pry1. Replace pi by qx, we have f € qi \ pr_1

Repeat this process, we get a sequence py C --- C p/ such that f € p|. This gives a sequence
pil C - Cplin A/(f). Hence we get dim A/(f) > dim A — 1.

Since f is not contained in minimal prime ideal, preimage of a minimal prime ideal in A/(f)
has height 1. Hence a sequence of prime ideals in A/fA can be extended by a minimal prime ideal
in A. Tt follows that dim A/(f) + 1 < dim A. O

Proposition A.3.16. Let (A, m) be a local noetherian ring with residue field k. Then the following
inequalities hold:
depth A < dim A < dimy T4 .

Proof. The first inequality is a direct corollary of Corollary A.3.15.
Let ti,--- ,t, be a k(m)-basis of m/m% Then we have m/(ty,--- ,t,) + m? = 0, whence
m/(ty, -, t,) = m(m/(ty,-- ,t,)). It follows that m = (¢1,--- ,¢,) by Nakayama’s Lemma. By
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Corollary A.3.15,
n+dimA/(ty, - ,t,) >n—1+dimA/(t1, - ,ty_1) > - > 1+dim A/(t;) > dim A.

We conclude the result. O]

Definition A.3.17. Let X be a locally noetherian scheme and k € Z>,. We say that X wverifies
property (Ry) or is reqular in codimension k if V§ € X with codim Z; < k,

dlmn(g) TX,§ = dim O)(’g.
We say that X verifies property (Sy) if V& € X with depth Ox ¢ <k,

depth OX,§ = dim OX,&-

Example A.3.18. Let A be a noetherian ring. Then A verifies (S1) iff A has no embedded point.
Suppose A verifies (S;). If p € Ass A, every element in p is a zero divisor. Then depth A, = 0.
It follows that dim A, = 0 and then p is minimal.
Suppose A has no embedded point. Let p € Spec A with depth A, = 0. This means every

element in pA, is a zero divisor. Then

p C {zero divisors in A} = U q.

minimal prime ideals

By Proposition A.1.2, p = q for some minimal g, whence dim A, = 0.

Example A.3.19. Let A be a noetherian ring. Then A is reduced iff it verifies (Ry) and (5).
Suppose A is reduced. Let pq,--- ,p, be all minimal prime ideals of A. We have (p; = 91 = (0),
where 0 is the nilradical of A. Hence A has no embedded point. Since A, is artinian, local and
reduced, A, is a field and hence regular.
Conversely, let Ass A be equal to {py,---,pn}. Then every p; is minimal by (S;). Let f be in
M. Then the image of f in Ay, is 0 since by (Rp), Ay, is a field. It follows that f € g;, where q; is
the p; component of (0) in A. Hence f € (q; = (0). That is, A is reduced.

A.3.4 Cohen-Macaulay rings

Definition A.3.20 (Cohen-Macaulay). A noetherian local ring (A, m) is called Cohen-Macaulay if
dim A = depth A. A noetherian ring A is called Cohen-Macaulay if for every prime ideal p € Spec A,
the localization A, is Cohen-Macaulay. This is equivalent to that A verifies (Sy) for all £ > 0.

| Example A.3.21 (Non Cohen-Macaulay rings). Yang: To be completed.

Corollary A.3.22. Let A be a noetherian ring, M a finite A-module and a € A an M-regular
element. Then depth M = depth M /aM + 1.

Corollary A.3.23. Let A be a noetherian ring a € A a nonzero divisor. Then A verifies (Sy) iff
A/aA verifies (Sg_1).
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Definition A.3.24. An ideal I of a noetherian ring A is called unmized if
ht(I) = ht(p), Vp e Ass(A/I).

Here ht(/) is defined as
ht(I) := inf{ht(p) : I C p}.

We say that the unmizedness theorem holds for a noetherian ring A if any ideal I C A generated
by ht(I) elements is unmixed. We say that the unmizedness theorem holds for a locally noetherian

scheme X if Ox ¢ is unmixed for any point § € X.

Theorem A.3.25. Let X be a locally noetherian scheme. Then the unmixedness theorem holds for
X if and only if X is Cohen-Macaulay.

Proof. We can assume that X = Spec A is affine.

Suppose X is Cohen-Macaulay. Let I C A be an ideal generated by ay,--- ,a, with r = ht([).
We claim that aq, - - - , a, is an A-regular sequence. If so, we get that the unmixedness theorem holds
for A by applying Example A.3.18 on A/I. Since ht(ay, - ,a,—1) < r—1 by Krull’s Principal Ideal
Theorem A.3.14 and ht(aq, -+ ,a,) = r < ht(ay, -+ ,a,_1)+ 1, we have ht(ay,--- ,a,_1) =r—1. By
induction on r, we can assume that ai,---,a,_; is an A-regular sequence. Hence any prime ideal
p € Ass A/(ay,- - ,a,—1) has height r—1. Now suppose a, is a zero divisor in A/(ay, - ,a,—1). Then
there exists a prime ideal p € Ass A/(ay,- - ,a,—1) such that a, € p. Then I C p and ht(I) <r—1.
This contradicts that ht(I) = r.

Suppose the unmixedness theorem holds for A. Let p € Spec A be a prime ideal with ht(p) = 7.
Then p € Ass A if and only if ht(p) = 0. If » > 0, there is a nonzero divisor a € p. By Krull’s
Principal Ideal Theorem A.3.14, ht(pA/aA) = r — 1. Inductively, we can find a regular sequence
ai,- - ,a, inp. Then depth A, = 7. O

Theorem A.3.26. Let X be a locally noetherian scheme. Suppose that X is Cohen-Macaulay. Let
F C X be a closed subset of codimension > k. Then the restriction H (X, Ox) — H'(X \ F,Ox)

is an isomorphism.

| Proof. Yang: To be completed. O

A.3.5 Regular rings

Definition A.3.27. A noetherian ring A is said to be regqular at p € Spec A if we have

where dim A, is the Krull dimension of the local ring A,.
A noetherian ring A is said to be regular if it is regular at every prime ideal p € Spec A. This is
equivalent to the condition that A verifies (Ry) for all k£ > 0.




A.4. FINITE ALGEBRA AND NORMALITY

Remark A.3.28. A noetherian ring A is regular if and only if it is regular at every maximal ideal

m € mSpec A. The proof uses homological tools; see Theorem B.3.17 and Corollary B.3.18.

Definition A.3.29. Let A be a noetherian ring that is regular at p € Spec A. A sequencety,--- ,t, €

p is called a regular system of parameters at p if their images form a basis of the x(p)-vector space

p/p*.

Proposition A.3.30. Let (A, m) be a noetherian local ring that is regular at m. Let t1,--- , ¢, be
a regular system of parameters at m, p; = (t1,--- ,¢;) and pp = (0). Then p; is a prime ideal of
height i, and A/p; is a regular local ring for all 7. In particular, regular local ring is integral, and

the regular system of parameters t¢q,--- ,t, is a regular sequence in A.

Proof. By the Krull’s Principal Ideal Theorem A.3.14, we have
n—1=dimA—-1<dimA/(t;) < dimn(m/(tl)) Taj)ym/t) <n— 1L

Hence dim A/(t;) = n — 1 and ht(¢;) = 1. Since to,--- ,t, generate m/(¢;), we have that A/(t;) is
regular at m/(¢1) and the images of t5, - ¢, form a regular system of parameters.

For integrality, we induct on the dimension of A. If dim A = 0, then A is a field and hence
integral. Suppose dim A > 0, let ¢ be a minimal prime ideal of A. Then t; € q. We have

n—1=dmA—-1<dimA/(q+0A) < dime/) Tajqrnaae) <n =1

By similar arguments, we have A/(q+1t;A) is regular at m/(q+t;A). By induction hypothesis, both
of A/t;A and A/(q+ t1A) are integral and of dimension n — 1. Hence t;A = t; A+ q, i.e. q C t1A.
For every a = bt; € q, we have b € q since t; € q. Then q C t;q C mq. By Nakayama’s Lemma,

q = 0, whence A is integral. -

Corollary A.3.31. A regular noetherian ring is Cohen-Macaulay.

Corollary A.3.32. A regular noetherian ring is normal.

Remark A.3.33. Indeed we can show a stronger result: a noetherian regular local ring is a UFD;

see Yang: ref.

A.4 Finite Algebra and Normality

Let R be a ring and A be an R-algebra. We say that A is of finite type over R if there exists a
surjective R-algebra homomorphism R[T},--- ,T,] — A for some n > 0. We say that A is finite over R

if it is finite as an R-module.

A.4.1 Finite algebra

Let A be a ring and B a finite A-algebra.
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| Example A.4.1. Let K be a number field. Then Ok is a finite Z-algebra. Yang: To be completed.

Lemma A.4.2. Let A C B be noetherian rings such that B is finite over A. Then the induced

morphism Spec B — Spec A is surjective.

Proof. For p € Spec A, let S := A — p and denote S~'B by B,. Then we have A, < B, and B, is
finite over A,. Let ‘BB, be a maximal ideal of B,. We claim that BB, N A, is maximal. Indeed,
consider A,/(P N A,) — B, /BB, the latter is finite over the former. This enforces A,/(PB, N A,)
be a field. Hence ‘BB, N A, = pA,, and then ‘PN A =p. ]

Proposition A.4.3. Let A C B be noetherian rings such that B is finite over A. Then dim A =
dim B.

Proof. If we have a sequence 1 C PBs of prime ideals in B, then there exists f € Py \ B;. Since B

is finite over A, there exist aq,--- ,a, € A such that
frraf 44 a, = 0.

Then a,, € PoNA. Ifa, € Py, 71+ +a,, € P since f ¢ Py. Then a,_; € Po. Repeat the
process, it will terminate, whence 1N A C PBo N A. Otherwise, we have f* € a;B+---+a,B C ;.
Conversely, suppose we have py,ps € Spec A with p; € ps. Choose Py € Spec B such that
PB1 N A = py, then we have A/p; C B/PB;. Let Po be the preimage of the prime ideal in B/,
which is over image of py in A/p;. Proposition A.4.2 guarantees that such B, exists. Then we get
By C Po. Repeat this progress, we get dim B > dim A. ]

Yang: To be completed

Definition A.4.4. An integral domain A is called normal if it is integrally closed in its field of
fractions Frac(A).

Lemma A.4.5. Let A C C be rings and B the integral closure of A in C, S a multiplicatively closed
subset of A. Then the integral closure of S~!'A in S7!C is S~!B.

Proof. For every b € B and Vs € S, there exists a; € A s.t.

bV* +ab" 4o +a, =0.

b n b n—1 .
(—) +a—i(—) fot 2,
s st \'s s

Hence b/s is integral over S™'A, S™!B is integral over S~ A.
If ¢/s € S7IC is integral over S™'A, then Ja; € S7'A s.t.

c\ "™ c\n—1
G (S
S S

Then

Then

Atasm 4 Ha,s"=0e STIC
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Then 3t € S s.t.
t(" 4+ ars M+ +a,s") =0 € C.

Then
(ct)™ + ayst(ct)” P 4 -+ a,s™t" = t"(c" +arsc 4 -+ a,s”) = 0.

Hence ct is integral over A, then ¢t € B. Then ¢/s = (ct)/(st) € S™'B. This completes the
proof. O

Proposition A.4.6. Normality is a local property. That is, for an integral domain A, TFAE:
(i) A is normal.
(i) For any prime ideal p € Spec A, the localization A, is normal.

(iii) For any maximal ideal m € mSpec A, the localization Ay, is normal.

Proof. When A is normal, A, is normal by Lemma A.4.5.

Assume that Ay is normal for every m € mSpec A. If A is not normal, let A be the integral
closure of A in Frac A, fl/ A is a nonzero A-module. Suppose p € Supp A/ A and p C m. We have
An/An =0and A,/A, = (Ay/An), # 0. This is a contradiction. O

Proposition A.4.7. Let A be a normal ring. Then A[X] is also normal.

Definition A.4.8. A scheme X is called normal if the local ring Ox ¢ is normal for any point { € X.

A ring A is called normal if Spec A is normal.

Remark A.4.9. For a general ring A4, let S := A\ (Ujeasea?) = Mpeassa A\ p- Then S is a
multiplicative set. The localization S~ A is called the total ring of fractions of A.

Suppose A is reduced and Ass A = {p1,--- ,p,}. Denote its total ring of fractions by Q. Note
that elements in @) are either unit or zero divisor. Hence any maximal ideal m is contained in | p;Q,
whence contained in some p;). Thus p;Q) are maximal ideals. And we have [p,QQ = 0. By the
Chinese Remainder Theorem, we have Q = [[Q/p:Q =[] Ay,

Let A be a reduced ring with total ring of fractions ). Then A is normal iff A is integral closed
in Q. If A is normal, then for every p € Spec A, A, is integral. Then there is unique minimal
prime ideal p; C p. In particular, any two minimal prime ideal are relatively prime. By the Chinese
Remainder Theorem, A = [[ A/p;. Just need to check A/p; is integral closed in A,,. This is clear
by check pointwise.

Conversely, suppose A is integral closed in ). Let e; be the unit element of A,,. It belongs to
A since e? —e; = 0. Since 1 = e, + -+ e, and e;ej = 0;;, we have A = [] Ae;. Since Ae; is integral

closed in A,,, it is normal. Hence A is normal.
Lemma A.4.10. Let A be a normal ring. Then A verifies (R;) and (S5).

Proof. Since all properties are local, we can assume A is integral and local.
For (S5), by Example 77, we only need to show that Assq A/f has no embedded point. Let
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p=(f:9) =€ AssyA/fA and t := f/g € FracA. After Replacing A by A,, we can assume
that p is maximal. By definition, t7'p C A. If t~!p C p, suppose p is generated by (1, -+ ,x,)
and t(zy, - ,2,) = ®(zy,- -+ ,2,)T for ® € M,(A). There is a monic polynomial x(T") € A[T]
vanishing ®. Then x(¢t7') = 0 and ¢~! € A. This is impossible by definition of ¢. Then t™'p = A,
and p = (t) is principal. By Krull’s Principal Ideal Theorem A.3.14, ht(p) = 1.

Now we show that A verifies (Ry). Suppose (A, m) is local of dimension 1. Choosing a € m,
A/a is of dimension 0. Then by A.3.11, m" C aA for some n > 1. Suppose m"~! ¢ aA. Choose
bem" '\ aA and let t = a/b. By construction, t 7! ¢ A and t~'m C A. After similar argument, we

see that m = tA, whence A is regular. O

Lemma A.4.11. Let (A, m) be a noetherian local ring of dimension 1. Then A is normal iff A is

regular.

Proof. By lemma A.4.10, we just need to show that regularity implies normality.

Let ¢ € m\ m?. Since A is regular, m = (¢). Let I C m be an ideal. If I C ("), m™, then for every
a € I, there exists a,, such that a = a,t". Then we get an ascending chain of ideals (a;) C (az) C - --.
Hence a = 0 by Nakayama’s Lemma. Suppose [ is not zero. Then there is some n such that I C m"
and I ¢ m"*. For every at" € I \ m"™! a ¢ m, whence a is a unit in A. Then I = (¢"). Hence A

is PID and hence normal. O]

Proposition A.4.12. Let A be a noetherian integral domain of dimension > 1 verifying (S3). Then

A= N A
peSpec A,ht(p)=1
Proof. Clearly A C ((A,. Let t = f/g € [ Ay. Since f € gA, and we have gA = (g4, N A),
f € gA. It follows that t € A. O

Theorem A.4.13 (Serre’s criterion for normality). Let X be a locally noetherian scheme. Then X

is normal if and only if it verifies (R1) and (5s).

Proof. One direction has been proved in Lemma A.4.10. Suppose X verifies (R;) and (S2). Again
we can assume X = Spec A is affine and A is local. By Remark A.4.9, we just need to show that A

is integral closed in its total ring of fractions (). Suppose we have

(B +o () svee

Since A verifies (S2), bA = (v, '(byAy). So it is sufficient to show that a, € b,A, with ht(p) = 1.
Note that A, is regular and hence normal by Lemma A.4.11. Then above equation gives us desired
result. ]
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A.5 Smoothness

A.5.1 Modules of differentials and derivations

In this subsection, let R be a ring and A an R-algebra.

Definition A.5.1 (Derivation). A derivation of A over R is an R-linear map 0 : A — M with an
A-module such that for all a,b € A, we have

d(ab) = ad(b) + b0(a).

Given the module M, the set of all derivations of A over R into M forms an A-module, denoted by
Der R(A, M ) o

Given a module homomorphism f : M — N of A-modules and a derivation 0 € Derg(A, M), the

map f o d is a derivation of A over R into V.

Proposition A.5.2. The functor Derg(A, —) is representable. The representing object is denoted
by € 4/r, which is called the module of differentials of A over R.

Proof. First suppose A is a free R-algebra with a set of generators ay, A € A. Then an R-derivation

0 € Derg(A, M) is uniquely determined by its values on the generators ay. Let

QA/R = @A'd&)\

AEA

and d : A = Qy/pr be the R-derivation defined by ay +— day. For any R-derivation 0 € Derg(A, M),
we can define a unique A-module homomorphism ®4 : Q4,p — M by sending day to d(ay) such
that 0 = ®y o d. This gives a bijection

DerR(A,M) gHOHlA(QA/R,M>, al—>(1)a.

Now suppose A = F'/I is an arbitrary R-algebra, where F' is a free R-algebra and [ is an ideal

of F'. Then we can define the module of differentials

QA/R = (QF/R XRrp A)/ZAdf
fel

The R-linear map dy : F ®p A dr, Qp/r @ A — Qu/pg is a derivation of A over R.

For any R-derivation 0 € Derg(A, M), note that FF — A 9 M is an R-derivation of F over R
into M. Then we get an F-module homomorphism Qp — M. It gives an A-module homomorphism
Qp®@pA— M,df ® 1+ 0f. This map factors into Qp @p A — Q4/p and $y : Q4 — M. Since

®y is A-linear and 4/r is generated by day as A-module, such ®5 is unique. ]

Corollary A.5.3. Suppose A is of finite type over R. Then the module of differentials 24,5 is a
finitely generated A-module.
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Remark A.5.4. Let B be an A-algebra, M an A-module and N a B-module. If there is a ho-
momorphism of A-modules M — N, then we can extend it to a homomorphism of B-modules
M ®4 B — N by sending m ® b to m - b. And such extension is unique in the sense of following

commutative diagram:
M ——-N.

Hence we get a natural bijection

Homy (M, N) = Homp(M ®4 B, N).

Proposition A.5.5. Let A, R’ be R-algebras and A’ := A ®r R'. Then the module of differentials

Qg is isomorphic to Q4 ®4 A'.
Proof. We check the universal property of Q4,p ®4 A'. First, the map
dA/:A@RR/%QA/R(X)RRIQQA/R@AAI, a@r—da®r

is an R’-derivation of A’ into Q4/r ®4 A’. For any R'-derivation 9’ : A" — M into an A’-module
M, we can compose it with the homomorphism A" — A and get an R-derivation 0 : A — M. By
the universal property of 24,r, there is a unique A-module homomorphism ® : 4,z — M such
that 0 = ® od,. Then we can extend it to an A’-module homomorphism @ : Q4,p ®4 A" = M by
Remark A.5.4. By the construction, we have & ody = 0. [

Proposition A.5.6. Let A be an R-algebra and S a multiplicative set of A. Then we have an
isomorphism

Qs-14/R = 5 Qu/n.

Proof. Let
da — ad

dg1a:STTA = Sy, = L1

S S

By direct computation, dg-14 is an R-derivation of S7'A over R into SilQA/R. For any R-
derivation 0 : S7'A — M into an S~'A-module M, we can get an S~!A-module homomorphism
" : S71Q4/r — M as proof of Proposition A.5.5. We have

a a, a
(s - g) = s@(;) + gas.

It follows that
a, sda—ads sP'(da) — ad’'(ds) , sda — ads
;) = 2 - 2 = & 2 )-

s s s
Thus, ' odg-14 = 0. O

o(

Theorem A.5.7. Let A be an R-algebra and B an A-algebra. Then there is a natural short exact
sequence

QA/R Qs B — QB/R — QB/A — 0
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of B-modules.

d
Proof. Let da/r : A — Q4/r be the R-derivation of A over R. The map A — B SEAIN Qp/r induces
a B-linear map

U:QA/R ®AB_>QB/R, dA/R(a)®b+—>de/R(a).

The map dp/4 is an A-derivation and hence R-derivation. Then it induces a B-linear map
v:Qpr — Qp/a, dp/r(b) — dpya(b).

Since Qp/4 is generated by elements of the form dg,4(b) for b € B, the map v is surjective.
And clearly dg/a(a) = adp/a(1) =0 for a € A.

d
Consider the composition B BN Qp/r — Qp/r/Imu. For every a € A,b € B, we have

[dg/r(ab)] = [bdp/r(a) + adp/r(b)] = [bdp/r(a)] + [adp/(b)] = [adp,a(D)].

Hence it is indeed an A-derivation of B. Then it induces a B-linear map
¢ Qp/a— Qpyr/Imu,  dpja(b) — [dp/r(b)].

The map ¢ is surjective since Qg is generated by elements of the form dp/gr(b) for b € B. Note
that the composition

QB/A i) QB/R/IHIU — QB/A/KGI"U

is the identity map. Thus, ¢ is injective and hence an isomorphism. In particular, we have Kerv =
Im u. [
Remark A.5.8. The exact sequence in Theorem A.5.7 is left exact if and only if every R-derivation
of A into B-module extends to an R-derivation of B into B-module.

Yang: To be completed.

Theorem A.5.9. Let A be an R-algebra and I an ideal of A. Set B := A/I. Then there is a natural
short exact sequence

[/[2 — QA/R ®a B — QB/R — 0
of B-modules.

Proof. Suppose A = F'/b for some free R-algebra F' and an ideal b of F'. Let a be the preimage of
I'in F. Let db (resp. da) denote the image of b (resp. a) in Qp/p. Then we have

QA/R XA B = QF/R Rp B/(db Rp B), QB/R = QF/R Rp B/(da Rp B)

Clearly
I/ = (a/b) ®r B — (da ®r B)/(db @F B)

is surjective. Then the exact sequence follows. [
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Definition A.5.10. Let k be a field and A an integral k-algebra of finite type of dimension n. We
say A is smooth at p € Spec A if the module of differentials €24, is a free A,-module of rank n.

Example A.5.11. Let K/k be a finite generated field extension and k' be the algebraic closure of k
in K. Then
dimK QK/k = trdeg(K/k) + dimk/ Qk//k,

and dimy Q= 0 if and only if k' is separable over k.

First suppose K = k' is algebraic over k. Suppose k'/k is separable. For every a € k', suppose
f(a) =0 for f € k[T]. Then df(«a) = f'(a)dar = 0. By the separability of k'/k, we have f'(a) # 0.
It follows that da = 0. Conversely, let a € k' be a inseparable element over k. Since k[a| —

n—1

kla, ™ — na is a non-zero R-derivation, we have Qo # 0. By induction on number of

generated elements, choosing a middle field k C k" C k’, at least one of 2/ and /i is non-zero.
Then Q/k # 0 by Theorem A.5.7.

Then suppose k' = k. By the Noether’s Normalization Lemma, we can find a finite set of
elements 77, - - - , T,, € K such that K is algebraic over k'(T}, ..., T,,). Note that we can choose T; such
that K/k'(Th, - -+ ,T,) is separable. To see this, if @ € K is an inseparable element over k'(T}, - -+ ,T},),
then by replacing a suitable T; with «, we reduce the inseparable degree of K/k'(Ty,--- ,T},).

Since K/K'(T4,- -+ ,T,) is finite, every k-derivation of k'(T%, - -+, T,,) into K-module extends to a
k-derivation of K into K-module. Then by Remark A.5.8, we have

0 = Qury e 1)k Qry 1) K= Qe = Qupweery ) — 0.

Finally, note that every k-derivation 0 of k" into K-module can be extended to K'[T,--- ,T,] by
setting T; = 0. Thus, we have

00— Qk’/k Ry k/[Tl’ . 7Tn] N Qk’[Tl,w,Tn}/k — Qk’[T1,~--,Tn]/k’ — 0.

This follows that

dimg QK/k = dimg QK/k’ + dimy Qk’/k‘

A.5.2 Applications to affine varieties

Let k be arbitrary field, A = k[T, ..., T,] and m a maximal ideal of A such that x(m) is separable over
k. We try to give an explanation of Zariski’s tangent space at m using the language of derivation. We
know that Qi = @), AdT;, thus Qa, x = P, AwdT;. Then

Dery(Am, Am) = Homy (Qa,, /k, An @A ;,

where 0; € Dery(Am, Aw) is the derivation defined by d7; +— 1 and d7} — 0 for j # i. It coincides with
the usual derivation f — 0f/0T;. Consider the restriction of 0; to m and take values in the residue

field k(m), we get

( B”T n n
d:m T AT s k(m)™
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Since k(m) is separable over k, we claim that Ker ® = m?. Indeed, by Remark A.5.12, we can write

every f € m\m? as ), a;g;. Then
of _ aagi i aai
or, ~ “or, " Yor

Since g; is separable, the image of dg;/JT; in k(m) is not zero. Hence ®(f) # 0. By the claim, ®

induces an isomorphism m/m? 2 x(m)" of x(m)-vector spaces. Then we get

n

Thw = (m/m*)" = (D x(m) - 3.
i=1
where x € A} is the point corresponding to m. This coincides with the usual tangent space at z in

language of differential geometry.

Remark A.5.12. Let k be arbitrary field, A = k[Ty,--- ,T,] and g; irreducible polynomials in one

variable T; over k. Then for every f € A, we can write

f= ) agogr. ar€A deggar < degg,

I=(i1,+ ,in)EZL,

This is called the Taylor expansion of f with respect to g1, -+ , gn.
When n = 1, it follows from division algorithm. For n > 1, we can use induction on n. Let
K=k(T1, -+ ,T,-1). Then we can write f as

f = Zaigiu a; € K[Tn]7 deg a; < deggn-
=0

Comparing the coefficients of two sides from the highest degree of T, to the lowest degree, we see
that
a; € k[Tl, ce ,Tnfl].

By induction hypothesis, the conclusion follows.

Let B = A/I be a k of finite type, I = (F,..., F,,) C m and n the image of m in B. We have an

exact sequence of k(m)-vector spaces
0— I/(INm?) —m/m?> —=n/n*> = 0.
It induces an isomorphism
Tpn = {0 € Tam: O(f) =0,Yf €I}
The Jacobian matriz of I, ..., F,, is the m x n matrix

oF;
oT,

J(FL, ... Fy) ::(

) 1<i<m,1<j<n
with entries in B.

Theorem A.5.13. Setting as above. Then B is regular at n if and only if the Jacobian matrix J

has maximal rank n — dim B, after taking values in the residue field x(m).
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Proof. We have an exact sequence
v m
0—=Tpn—=Tam — K" —0,

where U sends 0 € T to (O(F),...,0(F,,))". Note that the matrix of ¥ is just J7, the transpose

of the Jacobian matrix. Hence
rank J = n — dim, T, < n — dim B,

and the equality holds if and only if B is regular at n. ]
Remark A.5.14. If x(m) is not separable over k, then we still have the inequality

rank J < n — dim B,.
Indeed, in any case, we have an exact sequence
0—I/(INm?) —m/m*>—n/n®>—0.
Hence dim,, I/(I Nm?) = n — dim B,. There is a x(m)-linear map

I/(Inm?) = s(m)",  [f] = (0i(f),...,0u()",

and every row of the Jacobian matrix J is in the image of this map. Thus, the rank of J is at most
n — dim B,.
Hence if rank J = n — dim B,,, we can still see that B is regular at n. However, the converse

does not hold in general.

Proposition A.5.15. Let k be a field, k the algebraic closure of k, A a k-algebra of finite type and
Ay = A ® k. Yang: Suppose Ay is integral. Let m € mSpec A and m’ be a maximal ideal of Ay

lying over m. Then
(a) If Ay is regular at m’, then A is regular at m;

(b) suppose k(m) is separable over k, the converse holds.

Proof. Regarding J,, and J as matrices with entries in k, they are the same and hence have the
same rank. If Ay is regular at m’, since x(m) = k, then rank J,y = n — dim Ax,v. Note that
dim Ay v = trdeg( £ (Ax)/k) = trdeg(# (A)/k) = dim A,,, we have rank J,, = n — dim A,. Hence
A is regular at m.

Conversely, suppose A is regular at m and x(m) is separable over k. Then rank J,, = n—dim A,,.

Hence Ay is regular at m’. Yang: To be modified. N

Proposition A.5.16. Let k be a field and A an integral k-algebra of finite type and of dimension
n. Let k be the algebraic closure of k and Ay := A ®¢ k. Then A is smooth at p € Spec A if and

only if Ay is regular at every m’ over m.
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Proof. Since Q4 x = Q4 ®4 Ay is free of rank n if and only if 24, is free of rank n, we can assume
that k = k. If A is smooth at p, then Qg4 = @ A,df; is free of rank n. Let B; € Dery(An, An) be
the derivation defined by df; — 1 and d7} — 0 for j # i. Then we have 0, f; = d;; for 1 <1i,57 < n.

Then similar to above argument, we have an isomorphism

This shows that Ay is regular at m.

Conversely, suppose Ay is regular at m. Note that m/m? — Quy ®4 k is surjective since
Q4 = 0. Then by Nakayama’s lemma, €24,/ is generated by n elements as an Ay-module.

Note that dim y(a) Q. (a)x = trdeg(# (A)/k) = dim A, = n. Yang: By induction on transcen-
dental degree.

Yang: By Nakayama’s Lemma, €24,/ is free of rank n as an Ap-module.

Yang: To be completed. [

Example A.5.17. Let k be an imperfect field of characteristic p > 2. Suppose a = ? € k and S is
not in k. Let A = k[x,y]/(2? — y* — a) and m = (z,y? — a) = (z). Note that m is principal, so A is

regular at m. However,

= (B = = ) 7 = )) = (20,0 = (0.0) € Mysa(n(m).

Thus, A is not smooth at m. From the view of differentials, we have

Qanx = Andz @ Andy/ Ay - vde = k(m)dz @ Andy,

which is not free as an A,-module.

A.6 Formal Completion
A.6.1 Formal completion of rings and modules

Definition A.6.1. Let A be a ring and 7 a topology on A. We say that (A, 7)) is a topological ring
if the operations of addition and multiplication are continuous with respect to the topology 7.
Given a topological ring A. A topological A-module is a pair (M, Ty) where M is an A-module
and Ty is a topology on M such that the addition and scalar multiplication is continuous. The
morphisms of topological A-modules are the continuous A-linear maps. They form a category
denoted by TopMod ,.

Definition A.6.2. Let A be a ring, I an ideal of A and M an A-module. The [-adic topology on
M is the topology defined by the basis of open sets x + I*M for all x € M,k > 0.
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Example A.6.3. Let A = Z be the ring of integers and p a prime number. The p-adic topology on
Z is defined by the metric

d(z,y) = ||lz — yll, = p""Y,

where v is the valuation defined by the ideal pZ.

Note that for [-adic topology, any homomorphism f : M — N of A-modules is continuous since
f(x+ I*N) C f(x) + I*M for all z € M and k > 0. Hence the forgotten functor TopMod , — Mod 4

gives an equivalence of categories.

Let M be an A-module equipped with the I-adic topology. Note that M is Hausdorff as a topological
space if and only if (o I"M = {0}. In this case, we say that M is [-adically separated.

When M is [-adically separated, we can see that M is indeed a metric space. Fix r € (0,1). For
every x # y € M, there is a unique k > 0 such that x —y € I*M but x —y ¢ I**'M. We can define a
metric on M by

d(z,y) = .

This metric induces the I-adic topology on M.
To analyze the [-adic separation property of M, the following Artin-Rees Lemma is particularly

useful.

Theorem A.6.4 (Artin-Rees Lemma). Let A be a noetherian ring, / an ideal of A, M a finite

A-module and N a submodule of M. Then there exists an integer r such that for all n > 0, we have
(I"t™"M)NN =I"(I"M N N).
Proof. Let
A =AdIXa*PX?*®--- C A[X]

be a graded A-algebra. Note that if I = (ay,...,ax), then A" = Ala1 X, ..., a;X]|. Hence A’ is a
noetherian ring. Let
M =MoIMX o I’MX*®- -

be a graded A’-module. Then M’ is a finite A’-module since it is generated by M and M is finite
over A. Let
N =No(IMNN)Xo((’PMNN)X*®---

be a graded submodule of M’. Then N’ is finite over A’. Suppose N’ = 5~ A’x; with x; € I%M N N.
Choose r > d; for all i. Then the degree n + r part of N’ is equal to degree n part of A’ timing the
degree r part of N'. That is, for all n > 0, I"""M NN = ["(I"M N N). N

Corollary A.6.5. Let A be a noetherian ring, I an ideal of A, M a finite A-module and N a
submodule of M. Then the subspace topology on N induced by N C M coincides with the I-adic
topology on N.

| Proof. This is a direct consequence of the Artin-Rees Lemma. ]
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Corollary A.6.6. Let A be a noetherian ring, I an ideal of A, and M a finite A-module. Let
N =50 ["M. Then IN = N. In particular, if I C rad(A), then M is [-adically separated.

Proof. We have that
N=I""MNN=I"(I"MNN)=1I"NCIN C N.

The latter conclusion follows from the Nakayama’s Lemma. [

Definition A.6.7. Let A be a ring, [ an ideal of A and M an A-module. We say that M is complete
(with respect to I-adic topology) if M is I-adically separated and complete as a metric space with
respect to the metric induced by the /-adic topology.

Lemma A.6.8. Let A be a ring, [ an ideal of A and M an A-module. Then the inverse limit

—

M =lim(- = M/I"M — M/I""'M — --- = M/IM)

exists in the category of A-modules. Moreover, Ais an A-algebra and M is an A-module.

Proof. Let
M = {(:Cn) € HM/I"M Tyl xn} )
n>0
We claim that M is that we desired. Yang: To be completed. O

Definition A.6.9 (Formal Completion). Let A be a ring, I an ideal of A and M an A-module. The
formal completion of M with respect to I, denoted by M , is defined as

M :=1lim(--- = M/I"M — M/I" "M — -+ — M/IM),
where the maps are the natural projections M /I"M — M /I M.

Example A.6.10. Let A = Z be the ring of integers and I = pZ. The formal completion of Z with
respect to pZ is the ring of p-adic integers, denoted by Z,. The elements of Z, can be represented
as infinite series of the form

ag + a1p + agp® + - - -,
where a; € {0,1,...,p— 1}.
Example A.6.11. Let R be a ring, A = R[Xy,...,X,] and [ = (Xy,...,X,). The formal com-
pletion of A with respect to I is the ring of formal power series R[[X1,...,X,]]. The elements of

R[[X1,...,X,]] can be represented as infinite series of the form

where a;,

-----
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Proposition A.6.12. The formal completion M of a A-module M is complete, and image of M is

dense in M. Moreover, M is uniquely characterized by above properties.

| Proof. Yang: To be completed. [

By the universal property of the inverse limit, we get a covariant functor from the category of A-
modules to the category of topological A\—modules, which sends an A-module M to M and a morphism
f: M — N to the induced morphism f: M — N.

Lemma A.6.13. Let
0— M, — My — M; — 0

be an exact sequence of finite A-modules. Then the sequence of A-modules
0— ]\//.71 — ]\/4\2 — ]\//.73 — 0

is still exact.

| Proof. Yang: To be completed. ]

Proposition A.6.14. Let A be completion of a noetherian ring A with respect to an ideal I and

M a finite A-module. Then the natural map M ® 4 A — Mis an isomorphism.

Proof. Since A is noetherian and M is finite, we have an exact sequence
A" — A" — M — 0.
By Lemma A.6.13, we have an exact sequence
Am — An — M — 0.
On the other hand, we have
A" @A > A" @4 A= M®4A—0

by right exactness of the tensor product. Since the inverse limit commutes with finite direct sums,

we complete the proof by the Five Lemma. Il

Proposition A.6.15. Let A be a noetherian ring and I an ideal of A. Then the formal completion
A of A with respect to [ is a flat A-module.

| Proof. This is a direct consequence of Lemma A.6.13 and Proposition A.6.14. ]

Lemma A.6.16. Let A be the formal completion of a noetherian ring A with respect to an ideal I.

Suppose that [ is generated by aq, ..., a,. Then we have an isomorphism of topological rings

A AXy, .. X/ (X1 —ag, -+ Xn — an).

| Proof. Yang: To be completed. O
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Proposition A.6.17. Let A be a noetherian ring and I an ideal of A. Then the formal completion

A of A with respect to [ is a noetherian ring.

Proof. Note that A[[Xq,...,X,]| is noetherian by Hilbert’s Basis Theorem. Then the conclusion
follows from Lemma A.6.16. O

Proposition A.6.18. Let A be a noetherian ring and m a maximal ideal of A. Then the formal

completion A of A with respect to m is a local ring with maximal ideal mA.

| Proof. Yang: To be completed. O

A.6.2 Complete local rings

Let (A, m, k) be a noetherian complete local ring with respect to the m-adic topology. We say that A is
of equal characteristic if char A = char k, and of mized characteristic if char A # char k. In latter case,

chark = p and char A = 0 or char A = p*.

The goal of this subsection is the following structure theorem for noetherian complete local rings
due to Cohen.

Theorem A.6.19 (Cohen Structure Theorem). Let (A, m, k) be a noetherian complete local ring of

dimension d. Then
(a) A is a quotient of a noetherian regular complete local ring;
(b) if A is regular and of equal characteristic, then A = k[[X1,..., X4]];

(c) if A is regular, of mixed characteristic (0,p) and p € m?, then A = D[[X},..., Xy4_1]], where
(D, p, k) is a complete DVR;

(d) if A is regular, of mixed characteristic (0,p) and p € m?, then A = D[[X7,..., X4]]/(f), where
(D, p, k) is a complete DVR and f a regular parameter.

To prove the Cohen Structure Theorem, we first list some preliminary results on complete local

rings. They are independently important and can be used in other contexts.

Theorem A.6.20 (Hensel’s Lemma). Let (A, m, k) be a complete local ring, f € A[X] a monic
polynomial and f € k[X] its reduction modulo m. Suppose that f = g-h for some monic polynomials
G, h € k[X] such that gcd(g, h) = 1. Then the factorization lifts to a unique factorization f = g - h

in A[X] such that g and h are monic polynomials.

Proof. Lift g and h to monic polynomials gi,h; € A[X]. We inductively construct a sequence of
monic polynomials g,, h,, € A[X] such that A,, = f—g,h, € m"[X] and ¢g,, — g1, b — hns1 € m"[X]
for all n > 1. Suppose that g, and h,, are constructed. Let g,.1 = g, + ¢, and h,.; = h, + 1, for
Eny M € M"[X]. Then we have

f - gn+1hn+1 = An - (gnhn + nngn) + Enlin-
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Hence we just need to choose ¢, and 7, such that
Enhn 4+ ngn = A, mod m" ™ dege, < degg,, degn, < degh,.

Since ged(g, h) = 1, there exist @, 7 € k[X] such that g + oh = 1 and deg@ < degg, deg® < degh.
Lift w and © to u,v € A[X] preserving the degrees. Then we have ug, + vh, = 1 mod m. Let
en = ul, and n, = vA,. Then we get the desired equation. O

Proposition A.6.21. Let (A, m, k) be a noetherian complete local ring and M an A-module that
is m-adically separated. Suppose dimy M /mM < oo. Then the basis of M ®4 k as k-vector space

can be lifted to a generating set of M as an A-module.

Proof. Let ty,...,t, € M such that their images in M /mM form a basis of M /mM as a k-vector
space. Then M = t;A+ - +t,A+mM. For every x € M, we can write

xr = a071t1 +---+ ao’ntn + my

for some ap; € A and m; € mM. Inductively, we have mPM = tmP 4+ t,mF +mPt ML Suppose

that we have constructed m; € m*M. Then we can write
my = a1ty + -+ Qg pln + Mpg1.

Note that ), ., ax; converges in A, denote its limit by a;. Then we have

xT —Cthl + - +6Lntn = ZZamti +myg € mkM
=1 r>k

for all k. Since M is m-adically separated, © = ait; + - - - + a,t,. It follows that M =) At,. O

The key to prove the Cohen Structure Theorem is the existence of coefficient rings.

Definition A.6.22 (Coefficient rings). Let (A, m, k) be a noetherian complete local ring.

When A is equal-characteristic, the coefficient ring (or coefficient field) is a homomorphism of rings
k — A such that k - A — A/m is an isomorphism.

When A is mixed-characteristic, the coefficient ring is a complete local ring (R, pR,k) with a lo-
cal homomorphism of rings R < A such that the induced homomorphism R/pR — A/m is an

isomorphism.

Remark A.6.23. Recall that a homomorphism of local rings f : (A,m4) — (B, mp) is said to be

local if f~!'(mp) =my.

Theorem A.6.24. Every noetherian complete local ring (A, m, k) has a coefficient ring.

Assume the existence of coefficient rings, we can prove the Cohen Structure Theorem.

Proof of Cohen Structure Theorem. Let R be a coefficient ring of A and m = (fy, ..., f4) a minimal

generating set of m. Then we have a homomorphism of complete local rings

q):R[[Xla---7XdH —>A, ,lelﬁfZ
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Let n be the maximal ideal of R[[X1,..., X4]]. Then nA = m. By Proposition A.6.21, A is generated
by 1 as an R[[X,..., X,]]-module. This implies that ® is surjective and (a) follows.

If A is regular of equal characteristic, then m is generated by a regular sequence. By consider
the dimension of R[[X1,..., X4]] and A, we have that ¢ is an isomorphism. This proves (b).

Note that if A is regular of mixed characteristic (0,p) and p & m?, then m is generated by

D, f1,--., fa_1. Then consider the homomorphism of complete local rings
R[[Xl,...,Xd_l]] —>A, Xz — fz

By the same argument as above, we have that it is an isomorphism. This proves (c).
For (d), we have that ker @ is of height 1 by the dimension argument. Since regular local rings
are UFDs, we can write ker & = (f) for some f € R[[Xy,...,Xy]]. Then we finish. O

Existence of coefficient rings

Proof of Theorem A.6.2/ in characteristic 0. Note that for any n € Z, n € m. Hence Q C A. Let
Y := {subfield in A} and K a maximal element in ¥ with respect to the inclusion. The set ¥ is non-
empty since Q € X. By Zorn’s Lemma, K exists. Then K is a subfield of k by K <— A — A/m = k.
We claim that K is a coeflicient field of A.

Suppose there is t € k\ K. If ¢ is transcendent over K, lift ¢ to an element ¢ € A. Then for any
polynomial f # 0 € K|[T], we have f(f) # 0 € k. Hence f(t) ¢ m. This implies that 1/f(t) € A,
whence K(t) C A. This contradicts the maximality of K. If ¢ is algebraic over K, let f € K[T] be
the minimal polynomial of ¢. Then f is irreducible in K[T] and f(¢) = 0. Regard f as a polynomial
in A[T] by K — A. Note that char A = 0 implies that f is separable. By Hensel’s Lemma (Theorem
A.6.20), we can lift the root ¢ to an element ¢t € A such that f(¢) = 0. Then K () is a field extension
of K and K(t) C A. This contradicts the maximality of K again. ]

The same strategy does not work when char k = p > 0 since there might be inseparable extensions.

To fix this, we need to introduce the notion of p-basis.

Definition A.6.25. Let k be a field of characteristic p. A finite set {t1,...,t,} C k\ k? is called
p-independent if [k(tq,...,t,) : k| = p". A set © C k\ k? is called a p-independent if its any finite
subset is p-independent. A p-basis for k is a maximal p-independent set © C k \ kP.

By definition, we have that k = k?[©] for any p-basis © of k. For any a € k and 6 € ©, we can write
a as a polynomial in © with coefficients in k. The degree of 8 in such polynomial representation is at
most p — 1. Such polynomial representation is unique by definition of p-independence.

Applying the Frobenius map n times, we have that kP = k?""'[©7"]. This follows that k = k" [O)]
for all n. Moreover, for any a € k and 6 € ©, we can write a as a polynomial in © with coefficients in
kP" and the degree of # is at most p™ — 1. Such polynomial representation is unique.

Let k be a perfect field of characteristic p. If there is a € k \ k?, then k(a'/?)/k is an inseparable

extension. This contradicts the perfectness of k. Hence k = kP and k has no nonempty p-basis.

Example A.6.26. Let k = F,(t1,...,t,). Then k? =F,(t],... ). The set {t1,...,t,} is a p-basis
for k.




APPENDIX A. COMMUTATIVE ALGEBRA

Proof of Theorem A.6.2J in characteristic p. Choose © C A such that its image in A/m is a p-basis
for k. Let A, := A" = {a*": a € A} and K = (1,5(A,[0]). Then we claim that K is a coefficient
field of A.

First we show that A,[@] Nm C m?". For every a € A,[0], if the degree of § in the polynomial
representation of a is more than p™ —1, we can write 8% = %" .0° for some b < p". Regard %" € AP"
as coefficients. Now assume that a € A,[©] N m. Then consider the image of a in A/m. The image
of a equals 0 implies every coefficient of a is in m. Such coefficients are of form b*" for some b € A,
whence b € m. Hence a € m?". This implies that K Nm = (,5,(A4,[0] Nm) C (5, m”" = {0}.
Then K is a field and hence a subfield of k.

For any @ € k, note that k = k?[@] = k?’[0] = - .- = k?"[©] = - - -. For every n, write

a= EanLtn = PE,’IZ(E/Jn)u

where p, runs over all monomials in © with degree at most p"* — 1 and c,, € k. We call this
representation the p”-development of @ with respect to ©. Plug the p™-development of Cp, into Py p,

n-+m

we get the p"T™-development of @. In formula, that is,

Pﬁ,n(PE,m (Euner)) - Pﬁ,n+m (Eun+m).

Lift ¢, to ¢,, € A for all w,. Let a, := Prn(cu,) = >, " iy € Ay[0]. For m > n, we have
ap — Ay € An[O] Nm C m?". Hence a,, converges to an element a € A. Now we show that a € K.
For every u, let by, , € A be the element getting by plugging ¢, ,, into the %, ,. Then by, »

converges to an element b,, € A. By construction, we have

a = nlgn Pipik(Cupyr) = nhj& Pz i(byn) = Z Mk € A[©], VE.
It follows that a € K. O

Lemma A.6.27. Let (A, m, k) be a noetherian complete local ring of mixed characteristic. Suppose

that m™ = 0 for some n > 1. Then there exists a complete local ring (R, pR, k) with R C A.

Proof. Fix a p-basis of k and lift it to © C R. Let ¢ = p"~! and

M::{Q’f1~~~6§d|Hie@,kigq—l}, S={ 3 aula, € R

HEM, finite

For any a,b € A, we claim that @ = b mod m if and only if a? = ¢ mod m”. If « = b mod m,
write a = b + m for some m € m. Then a? = b + pb?'m + --- + m? Hence a”? = I’ mod m?.
Inductively, we have a? = b? mod m”. Conversely, if a? = b7 mod m", then a? — b7 € m"” C m.
Note that the Frobenius map x + 29 is injective on A/m. It follows that « = b mod m. By the
claim, S maps to k?[©] = k bijectively.
Let
R:=S+pS+p’S+---+pts.

We claim that R is a subring of A. If so, R/pR = k and we get a complete local ring (R, pR, k).
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Take a,b € A. We have
a? + b7 = (a+b)?+pce AT+ pA.
Inductively, we have
a® + b1 € A9+ pAT 4 -+ P AL

This implies that R is closed under addition. Note that §% = 6% . §* with b < ¢. Then for any
i, v € M, we have uv € S. Hence R is closed under multiplication. [

Lemma A.6.28. Let k be a field of characteristic p. Then there exists a DVR (D, p, k) of mixed
characteristic (0, p).

Proof. Fix a well order < on k and for any a € k, set k, be the subfield of k generated by all elements
b € k such that b < a. Then k = |J,__, k. We construct DVRs D, with residue field k, such that
D, C Dy for a < b. Begin from kg = I, and let Dy = Z,). Suppose that D, is constructed for all

a€k

a < b. If ky/k, is transcendental, then let Dy, be the localization of D,[b] at the prime ideal generated
by p.

If k, /k, is algebraic, then let f € k,[T] be the monic minimal polynomial of b. Let K, = Frac(D,)
and K, = K [T]/(f), where f is a monic lift of f to D,[T]. Note that f is irreducible since f is
irreducible. Let D, be the integral closure of D, in K,. In general, D, is a Dedekind domain.
Consider the prime factorization pD, = p{* - - - pi* in D,. For every i, Dy/p; is a field extension of k,
and f has a root in Dy /p;. Suppose deg f = deg f = d. It follows that [(Dy/p;) : ke] = d. Note that
we have Zle eifi = [Ky : Ki] = d. Hence k =1 and e; = 1. It follows that pD, is prime and Dy is
a DVR with residue field k.

Let D = U,cx Do- Then (D, pD, k) is the desired DVR. O
Example A.6.29. Let k = F,(t). Then D = Z[t],) is a DVR satisfying the condition in Lemma
A.6.28.

Let k = F,. For any n > 1, let K,, = K,,_1(({,»_1) and Ky = Q. Let D, := Ok, p, be the
localization of the ring of integers of K, at the prime p,, lying above p,,_1. Then D =, D, is a
DVR with residue field k.

Lemma A.6.30. Given k a field of characteristic p, there exists a unique complete local ring

(R, pR, k) of mixed characteristic (p™, p).

Proof. The existence follows from Lemma A.6.28. To show the uniqueness, suppose that (R, pR’, k)
is another complete local ring of mixed characteristic (p", p). Fix a p-basis of k and lift it to © C R

and ©' C R relatively. Let ¢ = p"~! and

M::{G’flmefjﬂeiGG,kigq—l}, S={ 3 aum

HEM, finite

a, € R?

Define M’,S” similarly with ©" and R'. Since S — R — k and S’ — R’ — k are bijections, we can
define a bijective map & : S — 5.

Note that any element in S can be written as s+ pr with s € S and r € R uniquely since S — k
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is bijective. Inductively, we can write any element in R as

n—1

r=5+ps;+p°sg+ -+ " s,

where s; € S. The similarly for R'. Extend ® to R and we get a bijection between R and R’. Note
that by construction, ® preserves addition and multiplication. Hence we get a ring isomorphism
®:R— R. Il
Proof of Theorem A.6.24 in mized characteristic. Since A is complete, we have A = @n A/m"™. By
Lemma A.6.27, there is a complete local ring (R,,pR,, k) with R, C A/m". By Lemma A.6.30,
such R, is unique up to isomorphism. It follows that R, = R,,/p* for m > n. We get an inverse
system

o Ry = Ry — - — Ry 2 k.

Let R := lim R,. Then (R,pR, k) is a complete local ring. The homomorphisms R, < A/m"

induce a homomorphism of complete local rings R < A. This concludes the proof. [



A.6. FORMAL COMPLETION
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Appendix B

Homological Algebra

B.1 Complexes and Homology

Definition B.1.1. Let A, and B, be two complexes in A and ,, 1, : A¢ — B, be two morphisms
of complexes. A homotopy between ¢, and 1, is a collection of morphisms h, : A, — B,_; such

that
Pn — '@bn = dBn+1 o hn + hn—l o dAn-

In diagram, we have

da,,
An—l—l An An—l >

&l AL

n+1
Bn+1 Bn anl >

B.2 Derived Functors

In this section, fix an abelian category A.

B.2.1 Resolution
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Definition B.2.1 (Resolution). Let A € A. A projective resolution (resp. flat resolution, free

resolution) of A is an exact sequence
=P, —-P1— =P —>F—A—=0,

where each P; is a projective (resp. flat, free) object in A.

An injective resolution of A is an exact sequence
0-A=I° TP "

where each I* is an injective object in A.

Proposition B.2.2. let P, : -+ - P > Php > A —>0and Qe : -+ = Q1 — Q9 — B — 0 be
complexes in A such that P; is projective and @), is exact. Given a morphism f : A — B, there exists
a morphism of complexes f, : P, — Q) such that fy = f. In particular, any two such morphism of
complexes are homotopic.

Dually, let I*: 0 - A - 1° - I' - -.-and J*: 0 - B — J° — J' — ... be complexes in A
such that J¢ is injective and I® is exact. Given a morphism f : A — B, there exists a morphism of

complexes f® : I* — J*® such that f® = f. In particular, any two such morphism of complexes are

homotopic.
| Proof. Yang: To be completed. [

Definition B.2.3. For an object A € A, the projective dimension of A, denoted proj.dim A, is the

smallest integer n such that there exists a projective resolution
0O—-P,—-P,1—-—>P—>FP—>A—-0

of A of length n. If no such n exists, we set proj.dim A = oco.
Dually, the injective dimension of A, denoted inj.dim A, is the smallest integer n such that there

exists an injective resolution
0= A—=1"—=T"—... "1 51" 0

of A of length n. If no such n exists, we set inj.dim A = oco.
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B.3 Applications to Commutative Algebra

B.3.1 Homological dimension

Lemma B.3.1. Let A be a ring and M an A-module. Then

sup proj. dim M = sup inj. dim N.
M N
Proof. Note that
proj.dim M <n

if and only if
Ext!, ,(M,N) =0, VN.

And this is equivalent to
inj. dim N < n.

Remark B.3.2. In fact, for fix N, we have
inj.dim N <n
if and only if
Exty, (A/I,N)=0, VI

By Lemma Yang: 7. Hence we have

sup proj.dim M = sup proj.dim M = supinj.dim N.
M finite M N

Definition B.3.3. Let A be a ring. The homological dimension of A, denoted hl. dim A, is defined
as

hl. dim A = sup proj. dim M = sup inj. dim M.
M M

Lemma B.3.4. Let A be a noetherian ring, B a flat A-algebra and M a finite A-module. Then we
have
Ext4,(M,N)® B = Exty,(M ® B,N @ M), VN.

| Proof. Yang: To be completed. O

Proposition B.3.5. Let A be a noetherian ring. Then

hl.dimA = sup hl dimA,.
pESpec A

Proof. Compute homological dimension of A using Ext’,(M, N) for finite M. The conclusion follows
from Propostion B.3.4. 0
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Definition B.3.6. Let (A, m, k) be a noetherian local ring. We say that a homomorphism of A-
modules f : M — N is minimal if the induced map M ®k — N ®k is an isomorphism. Equivalently,

f is minimal if and only if f is surjective and Ker f C mM.

Definition B.3.7. Let A be a noetherian local ring and M a finite A-module. A minimal projective

resolution of M is a projective resolution
dn dn—l d1 do
o= P, =P,y — - —>PL—=>F —>M-—0
such that each homomorphism P; — Kerd;_; is minimal.

Proposition B.3.8. Let (A, m, k) be a noetherian local ring and M a finite A-module. Then M
has a minimal projective resolution. Moreover, any two minimal projective resolutions of M are

isomorphic.

Proof. Suppose M ® 4k = @ k-T;. Lift x; to elements of M. Then we have a minimal homomorphism
do: P A-x; — M. Similarly choose minimal homomorphisms dj : A" — Kerd;_; fori =1,2,---.
This gives a minimal projective resolution.

Suppose we have two minimal homomorphism f,g : A" — M. After tensoring with k, we
have isomorphisms between f ® k and g ® k. Lifting to A, we get an homomorphism ¢ : f — g¢.
Here homomorphism between f, g means a homomorphism A" — A" such that f = go ¢. The

homomorphism ¢ is represented by a matrix 7. We have det T € m, whence ¢ is an isomorphism. [

Proposition B.3.9. Let L, — M be a minimal projective resolution and P, be an arbitrary pro-

jective resolution of M. Then we have P, = L, ® P, for some exact complexes P.

Proof. By Propostion B.2.2, we have homomorphism
L. %5 P, 2 L.

between complexes. By Propostion B.2.2 again, T, = 1, o ¢, is homotopic to the identity by h,.

Suppose T, is represented by a matrix. Since L, is minimal, we have
(T —id)(L,) = (dpy1 © by + hyq 0dy)(Ly) C ML,

Then det T ¢ m and hence T, is an isomorphism. It follows that ), is surjective, whence it splits P,

into a direct sum L & P, since L, is projective. By the Five Lemma, we see that P, is exact. O

Lemma B.3.10. Let (A, m,k) be a noetherian local ring and M a finite A-module. Then
proj. dim M < n if and only if Tor., (M, k) = 0.

Proof. The necessity is clear. For the sufficiency, we have a minimal projective resolution

dn dn dn— d d
i P B PSS P s s PSS Py M 0.
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Let C :=Imd,,. Then we have
0= Py 2 po oo,
Hence Tor{'(C, k) = Tor?, (M, k) = 0. Let K = Kerd,. Then we have the short exact sequence
0—-K—P,—C—0.
Since Tor?'(C, k) = 0, there is an exact sequence
0> KRsk—> P, 1.k —>C®4k—0.

Since P, — C' is minimal, we have K ® 4 k = 0. By the Nakayama’s lemma, K = 0. This implies
that proj. dim C' < 0 and hence proj. dim M < n. [

Proposition B.3.11. Let (A4, m, k) be a noetherian local ring. Then hl. dim A = proj. dimk (finite

or infinite).

Proof. The inequality hl.dim A > proj.dimk is by definition. Conversely, we can compute
TorﬁH(M ,k) using minimal projective resolution of k for any finite A-module M. By Lemma

B.3.10, we have proj. dim M < n if and only if Tor;., (M, k) = 0. This implies that proj.dim M < n

for all finite A-modules M if proj. dim k = n. By Remark B.3.2, we have hl. dim A < n. [

Proposition B.3.12. Let (A, m) be a noetherian local ring and M a finite A-module. Let a € m
be an M-regular element. Then proj.dim M /aM = proj. dim M + 1. Here we set co + 1 = 0.

Proof. We have an exact sequence
0= M=% M-— M/aM — 0.
Take the long exact sequence with respect to Tor(—, k), we get
-+ — Torf | (M, k) — Tor,, (M /aM,k) — Tor(M, k) =% Tor; (M, k) — - --

Since the derived homomorphism of *a is zero, we have Tor,(M/aM,k) = 0 if and only if
Tor (M, k) = 0. By Lemma B.3.10, we have proj. dim M /aM = proj. dim M + 1. O

B.3.2 Depth and regularity by homological algebra

Proposition B.3.13. Let (A, m, k) be a noetherian local ring and M a finite A-module. Then
depth M := inf{i : Ext’y(k, M) # 0}.

Proof. Let a € m be M-regular and N = M /aM. Then we claim that

inf{i : Ext’y(k, N) # 0} = inf{i : Ext’y(k, M) # 0} — 1.

Indeed, we have an exact sequence

0—>M3M-—N—O0.
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It induces a long exact sequence

Ext?, (k,Multq)
—_—

o= Bxt’ Nk, M) — Ext’H(k, N) — Exty(k, M) Ext’(k, M) — --- .

Note that a € m, then Ext’;(k, Mult,) = 0. It follows that when Ext’;'(k, M) = 0, we have
Ext’; ! (k, N) = 0 iff Ext’(k, M) = 0, whence the claim.

Let n = inf{i : Ext(k, M) # 0}. Induct on n. Suppose first n = 0. Since k is a simple
A-module, there is an injective homomorphism k — M. Then m € Ass M and hence depth M = 0.

Suppose n > 0., let ai,--- ,a,, € m be any M-regular sequence. Using the claim inductively on
M/(ay,- - ,am)M, we have n > depth. If M has no regular element, then m C UpeAssMp. Then
m = p for some p € Ass M. This show that we can find x # 0 € M such that p = Annx. It gives
a homomorphism k = A/m — M. That is a contradiction and hence M has a regular element. Let
a be M-regular and N = M /aM. Then depth N = n — 1 by the claim and induction hypothesis.
Hence we have depth M > n. O]

Lemma B.3.14. Let (A, m, k) be a noetherian local ring. Suppose we have exact sequences

d, dr— d
0— A™ dny gres Dby gm B g0

such that A™ — Kerd;_; is minimal for all 7. Then depth A > r.

Proof. Since d, is injective and its image is contained in mA" ~1, we can choose t € m that is not a

zero divisor. Denote the sequence by C,. Then we have a short exact sequence of complexes
0= Co 5 Cy— Cu/tCy — 0.
Consider the long exact sequence in homology
e Hy(C)) 25 Hi(Cl) — Hi(CoJtCy) — Hi 1 (Ca) =5 Hy 1(Co) — -

Since C, is exact, we have H;(C,) = 0 for all 7. In particular, H;(C./tC,) = 0 for all i > 2.

Inductively, we can choose a regular sequence of length r in m. [

Lemma B.3.15. Let (A, m, k) be a noetherian local ring and M a finite A-module. Suppose there

is an injective homomorphism k — M. Then proj. dim M > dimy T 4.

Proof. Let x1,+-+ ,x, C m \ m? such that their images in m/m? form a basis. Then we have a

complex

dn—
Koi= 0 — ATAGn Oy anetgon Sty oy z1gan Dy p0 gon oy

where
'
dp s ATAZT 5 ATTEAT e A Ny o > (=D e A AE A Ak,
k=1

Here €;, means that we omit the k-th element. Let P, — M be the minimal projective resolution of

M. Then we have a homomorphism of complexes

Ve : K¢ — P,
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induced by the injective homomorphism k — M.
We claim that ¢; is injective and splits P; into a direct sum K; & F; with F; free for all ¢ > 0.
Since K; and P; are free, we just need to show that ¢; ®4 idy is injective. Induct on ¢. For i = 0,

note that k - M ® 4 k is injective, by the commutative diagram

A k|

<P0®Aidkl l

Py@ak—=M®4k

the image of ¢y ®4 idy is not zero in Py ®4 k.

For i > 0, since K;_; and P;,_; are free, we have a natural isomorphism between
mK,_; ®ak = mP,_; ®4k

and

K1 ®@am/m®> = P,y ®4 m/m°.

We have a commutative diagram

Ki XA k—>mKi_1 ®Ak (B].)

| |

P,@sk——=mP,_1 @4k

Since P, 1/K; 1 = F; 4 is free, the right vertical map in (B.1) is injective. By construction of K,,
K; ®4k — mK,;_1 ®4k is injective. Hence the left vertical map in (B.1) is injective. This completes
the proof of the claim.

By the claim, P; # 0 for all ¢ < n and the conclusion follows. ]

Proposition B.3.16 (Auslander-Buchsbaum formula). Let A be a noetherian local ring and M a

finite A-module. Suppose proj.dim M < co. Then proj. dim M = depth A — depth M.
Proof. We have a minimal projective resolution
0= A" = A" = ... 5 A" 5 A" = M — 0.

By Lemma B.3.14, we have depth A > proj. dim M.
Induct on depth M. Suppose depth M = 0. Then by Proposition B.3.13, we have Hom 4 (k, M) #

0, whence there is an injective homomorphism k — M. By Lemma B.3.15, we have
depth A > proj. dim M > dimy T4 , > depth A.

If depth M > 0, choose a regular element a € m that is M-regular. Then by Propostion B.3.12, we

have

depth M + proj. dim M = depth(M /aM) — 1 + proj. dim(M /aM) + 1 = depth A.
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Theorem B.3.17. Let (A, m) be a noetherian local ring. Then A is regular at m if and only if
hl. dim A < oo.

Proof. Suppose A is regular at m. Let x1,--- ,x, be a minimal generating set of m. Then x,--- ,x,
is an A-regular sequence since A is regular at m. By Proposition B.3.12, we have proj.dimk =
proj.dim A/(xy, - ,2,)A = n+ proj.dim A = n.
Conversely, suppose hl. dim A < co. Then by Proposition B.3.11, we have proj. dimk < co. We
have
dimy T4 s < proj.dimk < depth A < dimy T4 .

The first “<” follows from Lemma B.3.15. The second “<” follows from Proposition B.3.16. Hence

we see that A is regular at m. [

Corollary B.3.18. Let (A, m) be a noetherian local ring. Then A is regular if and only if it is

regular at m.

Proof. The sufficiency is trivial. For the necessity, note that if A is regular, then hl. dim A < oo by

Theorem B.3.17. For any p € Spec A, we have a finite projective resolution
0O—=-PFP,—-PFP 11— =P —F—A/p—0.

Tensoring with A,, we have a finite projective resolution of x(p). By Theorem B.3.17 again, we see

that A, is regular at p. ]

Lemma B.3.19. Let A be a noetherian integral domain. Then A is a UFD if and only if every

height 1 prime ideal of A is principal.
| Proof. Yang: To be completed. [

Lemma B.3.20. Let A be a noetherian integral domain and () C A a non-zero prime ideal. Then
A is a UFD if and only if A[1/z] is a UFD.

| Proof. Yang: To be completed. [
Theorem B.3.21. Let A, m be a regular noetherian local ring. Then A is UFD.

| Proof. Yang: To be completed. O
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