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Hodge Index Theorem by Linear Algebra

1 Linear algebra

Proposition 1. Let 𝑉 be a real vector space of dimension 𝑛 with a non-degenerated symmetric
bilinear form ⟨−,−⟩. Consider the subset

𝑆 = {𝑥 ∈ 𝑉 ∣ ⟨𝑥, 𝑥⟩ > 0}.

Suppose that 𝑆 ≠ ∅ and there exists 𝑧 ∈ 𝑉 such that 𝑧⟂ ∩ 𝑆 = ∅, then the signature of ⟨−,−⟩ is of
type (1,𝑛 − 1), where 𝑧⟂ = {𝑣 ∈ 𝑉 ∣ ⟨𝑧, 𝑣⟩ = 0}.

Proof. Choose ℎ ∈ 𝑆. We claim that the restriction of ⟨−,−⟩ on ℎ⟂ is negative definite. First, the
restriction is non-degenerated. Otherwise, note that ℎ and ℎ⟂ generate 𝑉. If there exists 0 ≠ 𝑥 ∈ ℎ⟂
such that ⟨𝑥,𝑦⟩ = 0 for all 𝑦 ∈ ℎ⟂, then in particular ⟨𝑥, ℎ⟩ = 0, thus 𝑥 ∈ ℎ⟂ and 𝑥 ∈ 𝑉⟂ = {0},
which is a contradiction.

Hence if the restriction is not negative definite, then there exists 𝑥 ∈ ℎ⟂ such that ⟨𝑥, 𝑥⟩ > 0.
Then consider the subspace 𝑉0 generated by ℎ and 𝑥. We have ℎ2, 𝑥2 > 0 and ℎ ⋅ 𝑥 = 0, thus the
restriction of ⟨−,−⟩ on 𝑉0 is of type (2, 0). Hence 𝑧⟂ ∩ 𝑉0 = {0}. However, consider the dimension
count

dim(𝑧⟂ + 𝑉0) = dim(𝑧⟂) + dim(𝑉0) − dim(𝑧⟂ ∩ 𝑉0) = (𝑛 − 1) + 2 − 0 = 𝑛 + 1 > 𝑛 = dim(𝑉),

which is a contradiction.
Remark 2. Geometrically, we have the following equivalent statement:

(a) 𝑆 ≠ ∅ and there exists 𝑧 ∈ 𝑉 such that 𝑧⟂ ∩ 𝑆 = ∅;

(b) the signature of ⟨−,−⟩ is of type (1,𝑛 − 1);

(c) the set 𝑆 has two connected components.

We have shown (𝑎) ⇒ (𝑏) in Proposition 1. If the signature of ⟨−,−⟩ is of type (1,𝑛 − 1), then
we can choose a basis such that the matrix of ⟨−,−⟩ is

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 ⋯ 0
0 −1 0 ⋯ 0
0 0 −1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ −1

⎞
⎟
⎟
⎟
⎟
⎠

.

Then the set 𝑆 is given by the equation

𝑥21 − 𝑥22 −⋯− 𝑥2𝑛 > 0,

which has two connected components, thus (𝑏) ⇒ (𝑐). Finally, if 𝑆 has two connected components,
then for any 𝑧 ∈ 𝑆, we claim that 𝑧⟂ ∩ 𝑆 = ∅. Otherwise, there exists 𝑥 ∈ 𝑧⟂ ∩ 𝑆. Considering on
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the subspace 𝑉0 generated by 𝑧 and 𝑥, we see that 𝑧 and −𝑧 lie in the same connected component of
𝑆. For every 𝑦 ∈ 𝑆, assume 𝑧.𝑦 > 0 (otherwise replace 𝑧 by −𝑧), then the line segment 𝑡𝑧+ (1− 𝑡)𝑦
for 𝑡 ∈ [0, 1] connects 𝑧 and 𝑦 in 𝑆. Hence 𝑆 is path connected, which is a contradiction.

Example 3. Let 𝑉 = ℝ4 = {(𝑡, 𝑥,𝑦, 𝑧) ∣ 𝑡, 𝑥,𝑦, 𝑧 ∈ ℝ} be the Minkowski space with the bilinear form

⟨(𝑡, 𝑥,𝑦, 𝑧), (𝑡′, 𝑥′,𝑦′, 𝑧′)⟩ = 𝑡𝑡′ − 𝑥𝑥′ − 𝑦𝑦′ − 𝑧𝑧′.

Then (the closure of) the set 𝑆 = {(𝑡, 𝑥,𝑦, 𝑧) ∈ 𝑉 ∣ 𝑡2 − 𝑥2 − 𝑦2 − 𝑧2 > 0} is called the set of light
cone. It has two connected components, which are called the future light cone and the past light
cone; see fig. 1.

Figure 1: Light cone in Minkowski space, from https://en.wikipedia.org/wiki/Light_cone

2 Hodge index theorem for surfaces

Lemma 4 (Riemann-Roch theorem for surfaces). Let 𝑋 be a smooth projective surface over an
algebraically closed field 𝕜 and 𝐷 a divisor on 𝑋. Then we have

ℎ0(𝒪𝑋(𝐷)) − ℎ1(𝒪𝑋(𝐷)) + ℎ0(𝒪𝑋(𝐾𝑋 − 𝐷)) = 𝜒(𝒪𝑋) +
1
2𝐷 ⋅ (𝐷 − 𝐾𝑋),

where 𝐾𝑋 is the canonical divisor of 𝑋.

Lemma 5. Let 𝑋 be a smooth projective surface over an algebraically closed field 𝕜 and 𝐷 a divisor
on 𝑋. If 𝐷2 > 0, then at least one of 𝐷 and −𝐷 is pseudo-effective.

Proof. Suppose for contradiction that both 𝐷 and −𝐷 are not pseudo-effective. In particular, we
have ℎ0(𝒪𝑋(𝑚𝐷)) = 0 for all 𝑚 > 0. By Lemma 4, we have

ℎ0(𝒪𝑋(𝐾𝑋 −𝑚𝐷)) ≥ 𝜒(𝒪𝑋) +
1
2𝑚𝐷 ⋅ (𝑚𝐷 + 𝐾𝑋) > 0 for all 𝑚 ≫ 0.

Hence there exist effective divisors 𝐸𝑚 ∼ 𝐾𝑋 −𝑚𝐷 for all 𝑚 ≫ 0. We have −𝐷 ∼ℚ
1
𝑚
(𝐸𝑚 − 𝐾𝑋) is

pseudo-effective, which is a contradiction.

https://en.wikipedia.org/wiki/Light_cone


Hodge Index Theorem by Linear Algebra 3

Theorem 6. Let 𝑋 be a smooth projective surface over an algebraically closed field 𝕜. Then the
intersection form on NS(𝑋)ℝ = NS(𝑋) ⊗ℤ ℝ is of type (1,𝜌(𝑋) − 1), where 𝜌(𝑋) = dimℝ NS(𝑋)ℝ is
the Picard number of 𝑋.

Proof. Note that both Psef(𝑋) ⧵ {0} and −Psef(𝑋) ⧵ {0} are convex cones in NS(𝑋)ℝ and they are
disjoint. Hence there exists a hyperplane 𝐻 in NS(𝑋)ℝ such that 𝐻 ∩Psef(𝑋) = {0} by the geometric
form of Hahn-Banach theorem. By Lemma 5,

𝐻 ∩ {𝐷 ∈ NS(𝑋)ℝ ∣ 𝐷2 > 0} = ∅.

Then the conclusion follows from Proposition 1.

3 Siu’s inequality in the surface case

Theorem 7 (Siu’s inequality). Let 𝑋 be a smooth projective variety of dimension 𝑛 over an alge-
braically closed field 𝕜. Let 𝐴,𝐵 be nef divisors on 𝑋 such that 𝐴𝑛 > 0. Then we have

𝐴𝑛 ⋅ 𝐵𝑛 ≤ 𝑛(𝐴𝑛−1 ⋅ 𝐵) ⋅ (𝐵𝑛−1 ⋅ 𝐴).

In the surface case, it is easy. The following is a proof using Theorem 6 and linear algebra.

Proposition 8. Let 𝑉 be a real vector space of dimension 𝑛 with a non-degenerated symmetric
bilinear form ⟨−,−⟩ of type (1,𝑛 − 1). Let 𝑣 ∈ 𝑉 with ⟨𝑣, 𝑣⟩ > 0. Then for any 𝑤 ∈ 𝑉, we have

⟨𝑣, 𝑣⟩ ⋅ ⟨𝑤,𝑤⟩ ≤ ⟨𝑣,𝑤⟩2,

and the equality holds if and only if 𝑣 and 𝑤 are linearly dependent.

Proof. By normalizing 𝑣, we may assume ⟨𝑣, 𝑣⟩ = 1. Consider the decomposition 𝑉 = ℝ𝑣⊕ 𝑣⟂. For
any 𝑤 ∈ 𝑉, we can write 𝑤 = 𝑎𝑣 + 𝑢 for some 𝑎 ∈ ℝ and 𝑢 ∈ 𝑣⟂. It is equivalent to show that

𝑎2 + 2𝑎⟨𝑣,𝑢⟩ + ⟨𝑢,𝑢⟩ ≤ (𝑎 + ⟨𝑣,𝑢⟩)2,

which is equivalent to ⟨𝑢,𝑢⟩ ≤ ⟨𝑣,𝑢⟩2 = 0. Note that the restriction of ⟨−,−⟩ on 𝑣⟂ is negative
definite. The conclusion follows.
Remark 9. Proposition 8 is a question in the postgraduate entrance exam of East China Normal
University in 2025.
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