
Git: Quick Command Handbook

Repository
Basic commands to initialize or connect to a remote repository.

create new repo in current directory:
git init

copy remote repository to local machine:
git clone <url>

show remote names and URLs (e.g. origin):
git remote -v

add remote named origin (conventional):
git remote add origin <url>

Staging & Commits
Stage changes to include them in the next commit, then create a commit with a message.
show working tree and staged changes:

git status

stage file (use . or -A to add many):
git add <file>

create a commit from staged changes:
git commit -m "msg"

unstage file (moves from index back to working tree):
git restore --staged <file>

1



Branching & Merging
Branches isolate work; switch between them and combine changes via merge. list local
branches:

git branch

create a branch (does not checkout):
git branch <name>

switch to branch (older form):
git checkout <name>

create and switch to a branch (modern form):
git switch -c <name>

merge <branch> into the current branch:
git merge <branch >

delete local branch (refuses if unmerged):
git branch -d <branch >

Remote Workflows
Fetch remote commits, integrate them locally, and push your branches. update remote-
tracking branches from origin:

git fetch origin

fetch and merge (may create a merge commit):
git pull

fetch and rebase local commits onto remote tip (linear history):
git pull --rebase

push local branch to origin:
git push origin <branch >

set upstream so future git push knows where to go:
git push -u origin <branch >

same as -u:
git push --set-upstream origin <branch >

safer force push; only if remote hasn’t moved unexpectedly:
git push --force -with-lease

2



Submodule
Manage nested repositories within a parent repository. add submodule at path:

git submodule add <url> <path>

initialize submodules (after cloning):
git submodule init

fetch and checkout submodule commits:
git submodule update

clone repo with submodules:
git clone --recurse -submodules <url>

Inspecting History
Examine commit history, changes, and who changed what. compact visual history:

git log --oneline --graph --decorate

show patches for a file across commits:
git log -p <file>

show commit details and diff:
git show <commit >

line-by-line authorship for a file:
git blame <file>

unstaged changes (working tree vs index):
git diff

staged changes (index vs HEAD):
git diff --staged

Undoing Changes
Commands for discarding or moving changes; use with care. discard working changes in
<file> (from index/HEAD):

git restore <file>

restore file content from a specific commit:
git restore --source <commit > <file>

move HEAD to commit, keep index and working tree (undo commits):

3



git reset --soft <commit >

default: move HEAD and reset index, keep working tree:
git reset --mixed <commit >

reset HEAD, index, and working tree to commit (dangerous):
git reset --hard <commit >

create a new commit that undoes the specified commit (safe for published history):
git revert <commit >

Safety Tips
• Prefer git pull –rebase for cleaner history when collaborating.

• Use –force-with-lease instead of –force to avoid overwriting others’ work.

• Use annotated tags for releases (git tag -a).

• Run destructive commands (git reset –hard, git push –force) only when sure and
ideally on non-shared branches.

4


