Git: Quick Command Handbook

Repository

Basic commands to initialize or connect to a remote repository.
create new repo in current directory:

git init

copy remote repository to local machine:

git clone <url>

show remote names and URLs (e.g. origin):

git remote -v

add remote named origin (conventional):

git remote add origin <url>

Staging & Commits

Stage changes to include them in the next commit, then create a commit with a message.
show working tree and staged changes:

git status

stage file (use . or -A to add many):
git add <file>

create a commit from staged changes:

git commit -m "msg"

unstage file (moves from index back to working tree):

git restore --staged <file>



Branching & Merging

Branches isolate work; switch between them and combine changes via merge. list local
branches:

git branch

create a branch (does not checkout):

git branch <name>

switch to branch (older form):

git checkout <name>

create and switch to a branch (modern form):

git switch -c <name>

merge <branch> into the current branch:

git merge <branch>

delete local branch (refuses if unmerged):

git branch -d <branch>

Remote Workflows

Fetch remote commits, integrate them locally, and push your branches. update remote-
tracking branches from origin:

git fetch origin

fetch and merge (may create a merge commit):

git pull

fetch and rebase local commits onto remote tip (linear history):

git pull --rebase

push local branch to origin:

git push origin <branch>

set upstream so future git push knows where to go:

git push -u origin <branch>

same as -u.

git push --set-upstream origin <branch>

safer force push; only if remote hasn’t moved unexpectedly:

git push --force-with-lease



Submodule

Manage nested repositories within a parent repository. add submodule at path:

git submodule add <url> <path>

initialize submodules (after cloning):

git submodule init

fetch and checkout submodule commits:

git submodule update

clone repo with submodules:

git clone --recurse-submodules <url>

Inspecting History

Examine commit history, changes, and who changed what. compact visual history:

git log --oneline --graph --decorate

show patches for a file across commits:

git log -p <file>

show commit details and diff:

git show <commit>

line-by-line authorship for a file:

git blame <file>

unstaged changes (working tree vs index):

git diff

staged changes (index vs HEAD):
git diff --staged

Undoing Changes

Commands for discarding or moving changes; use with care. discard working changes in
<file> (from index/HEAD):

git restore <file>

restore file content from a specific commit:

git restore --source <commit> <file>

move HEAD to commit, keep index and working tree (undo commits):

3



git reset --soft <commit>

default: move HEAD and reset index, keep working tree:

git reset --mixed <commit>

reset HEAD, index, and working tree to commit (dangerous):

git reset --hard <commit>

create a new commit that undoes the specified commit (safe for published history):

git revert <commit>

Safety Tips

o Prefer git pull —rebase for cleaner history when collaborating.
o Use —force-with-lease instead of —force to avoid overwriting others’ work.
» Use annotated tags for releases (git tag -a).

e Run destructive commands (git reset —hard, git push —force) only when sure and
ideally on non-shared branches.



